5 research outputs found

    Feasibility and Safety of Flow Diversion in the Treatment of Intracranial Aneurysms via Transradial Approach: A Single-Arm Meta-Analysis

    Get PDF
    BackgroundWhile studies have confirmed that flow diversion (FD) can treat intracranial aneurysms via transradial approach (TRA), it remains unclear whether their treatment ultimately impacts safety and feasibility. We aim to conduct a systematic review and meta-analysis assessing the safety and feasibility after FD treatment of intracranial aneurysms via TRA.MethodsPubMed, EMBASE, and Web of Science were systematically reviewed. The primary outcomes were the success rate and the access-related complications of deploying FD via TRA. Meta-analysis was performed using a random or fixed effect model based on heterogeneity. And the publication bias was evaluated using a funnel plot. This study was registered with PROSPERO, number CRD42021244448.ResultsData from 8 studies met inclusion criteria (250 non-duplicated patients). The success rate was 93% (95% confidence interval [CI] 0.86–0.98; I2 = 61.05%; p = 0.01). The access-related complications rate was 1% (95% CI 0–0.03; I2 = 0.00%; p < 0.01). The mainly access-related complications included radial artery spasm (85.7%) and radial artery occlusion (14.3%). The TRA convert to transfemoral approach (TFA) was 7% (95% CI 0.02–0.14; I2 = 61.05%; p = 0.01).ConclusionsAlthough TFA is still the main access for FD in the treatment of intracranial aneurysms, the TRA also has a higher success rate and lower access-related complications rate. With the improvement of future experience and equipment, the TRA may become the main access for FD which has more advantages. Future studies should design prospective, multicenter randomized controlled studies for long-term follow-up

    Life cycle assessment of carbon emissions for cross-sea tunnel: A case study of Shenzhen-Zhongshan Bridge and Tunnel in China

    No full text
    Due to significant population concentration and capital influx in Guangdong-Hong Kong-Macao Greater Bay Area, the construction of cross-sea tunnels with significant consumption of various resources and materials, has been frequently witnessed. However, there is a lack of knowledge regarding how carbon emissions of cross-sea transportation infrastructure are generated across its life-cycle stages. This study proposes a life cycle assessment (LCA) approach for quantifying the carbon emissions and exploring the carbon reduction potentials with a case study of a world-renowned cross-sea tunnel project in Guangdong-Hong Kong-Macao Greater Bay Area. The results find that this project contributes approximately 849 kilotons CO2eq of carbon emissions with an emission intensity of 1.1 kilotons CO2eq per meter. The materialization stage is the largest contributor of carbon emissions (474.9 kilotons CO2eq), followed by service stage (248.3 kilotons CO2eq, accounting for 29.2 %). Some carbon emissions of raw materials can be offset by using recycled materials. The discarded concrete, block, stone, and sand, occupying over 90 % of the total recycled waste in weight could achieve a 93.5 % of carbon reduction potentially. It provides the opportunity to reveal the engineering details and carbon emission for a world-class super complex cross-sea transportation infrastructure. This study makes one of the first attempts to quantify life-cycle carbon emissions of cross-sea transportation infrastructure, which enriches foundational dataset for environmental impact assessment in this emerging field. The findings of this study can provide scientific references for formulating targeted low-carbon strategies for cross-sea transportation infrastructure across its different life-cycle stages
    corecore