3 research outputs found

    Convolutional neural networks can decode eye movement data: A black box approach to predicting task from eye movements

    Get PDF
    Previous attempts to classify task from eye movement data have relied on model architectures designed to emulate theoretically defined cognitive processes and/or data that have been processed into aggregate (e.g., fixations, saccades) or statistical (e.g., fixation density) features. Black box convolutional neural networks (CNNs) are capable of identifying relevant features in raw and minimally processed data and images, but difficulty interpreting these model architectures has contributed to challenges in generalizing lab-trained CNNs to applied contexts. In the current study, a CNN classifier was used to classify task from two eye movement datasets (Exploratory and Confirmatory) in which participants searched, memorized, or rated indoor and outdoor scene images. The Exploratory dataset was used to tune the hyperparameters of the model, and the resulting model architecture was retrained, validated, and tested on the Confirmatory dataset. The data were formatted into timelines (i.e., x-coordinate, y-coordinate, pupil size) and minimally processed images. To further understand the informational value of each component of the eye movement data, the timeline and image datasets were broken down into subsets with one or more components systematically removed. Classification of the timeline data consistently outperformed the image data. The Memorize condition was most often confused with Search and Rate. Pupil size was the least uniquely informative component when compared with the x- and y-coordinates. The general pattern of results for the Exploratory dataset was replicated in the Confirmatory dataset. Overall, the present study provides a practical and reliable black box solution to classifying task from eye movement data

    Deep-Learning-Based Multivariate Pattern Analysis (dMVPA): A Tutorial and a Toolbox

    Get PDF
    In recent years, multivariate pattern analysis (MVPA) has been hugely beneficial for cognitive neuroscience by making new experiment designs possible and by increasing the inferential power of functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and other neuroimaging methodologies. In a similar time frame, “deep learning” (a term for the use of artificial neural networks with convolutional, recurrent, or similarly sophisticated architectures) has produced a parallel revolution in the field of machine learning and has been employed across a wide variety of applications. Traditional MVPA also uses a form of machine learning, but most commonly with much simpler techniques based on linear calculations; a number of studies have applied deep learning techniques to neuroimaging data, but we believe that those have barely scratched the surface of the potential deep learning holds for the field. In this paper, we provide a brief introduction to deep learning for those new to the technique, explore the logistical pros and cons of using deep learning to analyze neuroimaging data – which we term “deep MVPA,” or dMVPA – and introduce a new software toolbox (the “Deep Learning In Neuroimaging: Exploration, Analysis, Tools, and Education” package, DeLINEATE for short) intended to facilitate dMVPA for neuroscientists (and indeed, scientists more broadly) everywhere
    corecore