32 research outputs found

    Phosphorylation Alters the Interaction of the Arabidopsis Phosphotransfer Protein AHP1 with Its Sensor Kinase ETR1

    Get PDF
    The ethylene receptor ethylene response 1 (ETR1) and the Arabidopsis histidine-containing phosphotransfer protein 1 (AHP1) form a tight complex in vitro. According to our current model ETR1 and AHP1 together with a response regulator form a phosphorelay system controlling the gene expression response to the plant hormone ethylene, similar to the two-component signaling in bacteria. The model implies that ETR1 functions as a sensor kinase and is autophosphorylated in the absence of ethylene. The phosphoryl group is then transferred onto a histidine at the canonical phosphorylation site in AHP1. For phosphoryl group transfer both binding partners need to form a tight complex. After ethylene binding the receptor is switched to the non-phosphorylated state. This switch is accompanied by a conformational change that decreases the affinity to the phosphorylated AHP1. To test this model we used fluorescence polarization and examined how the phosphorylation status of the proteins affects formation of the suggested ETR1−AHP1 signaling complex. We have employed various mutants of ETR1 and AHP1 mimicking permanent phosphorylation or preventing phosphorylation, respectively. Our results show that phosphorylation plays an important role in complex formation as affinity is dramatically reduced when the signaling partners are either both in their non-phosphorylated form or both in their phosphorylated form. On the other hand, affinity is greatly enhanced when either protein is in the phosphorylated state and the corresponding partner in its non-phosphorylated form. Our results indicate that interaction of ETR1 and AHP1 requires that ETR1 is a dimer, as in its functional state as receptor in planta

    Intelligent mining of large-scale bio-data: bioinformatics applications

    Get PDF
    Today, there is a collection of a tremendous amount of bio-data because of the computerized applications worldwide. Therefore, scholars have been encouraged to develop effective methods to extract the hidden knowledge in these data. Consequently, a challenging and valuable area for research in artificial intelligence has been created. Bioinformatics creates heuristic approaches and complex algorithms using artificial intelligence and information technology in order to solve biological problems. Intelligent implication of the data can accelerate biological knowledge discovery. Data mining, as biology intelligence, attempts to find reliable, new, useful and meaningful patterns in huge amounts of data. Hence, there is a high potential to raise the interaction between artificial intelligence and bio-data mining. The present paper argues how artificial intelligence can assist bio-data analysis and gives an up-to-date review of different applications of bio-data mining. It also highlights some future perspectives of data mining in bioinformatics that can inspire further developments of data mining instruments. Important and new techniques are critically discussed for intelligent knowledge discovery of different types of row datasets with applicable examples in human, plant and animal sciences. Finally, a broad perception of this hot topic in data science is given
    corecore