4 research outputs found

    Biobased Heat-Triggered Shape-Memory Polymers Based on Polylactide/Epoxidized Natural Rubber Blend System Fabricated via Peroxide-Induced Dynamic Vulcanization: Co-continuous Phase Structure, Shape Memory Behavior, and Interfacial Compatibilization

    No full text
    A biobased heat-triggered shape-memory polymer (HSMP) consisting of polylactide (PLA) and epoxidized natural rubber (ENR) was fabricated by peroxide-induced dynamic vulcanization. The cross-linked ENR phase exhibits a continuous net-like structure embedded in the PLA phase, which is different from a conventional plastic/rubber system having the typical “sea–island” morphology in which vulcanized rubber particles were dispersed in plastic matrix. In situ interfacial compatibilization was confirmed by FTIR analysis. The shape-recovery ratios of the PLA/ENR HSMPs were significantly improved over 90%, compared to that (60–70%) of PLA. The shape fixing and memorizing capability of PLA/ENR HSMPs was realized by the glass transition of the PLA phase: cross-linked ENR continuous phase at rubbery state offered strong recovery driving force, improved interface provided effective stress-transferring during shape recovery, and PLA continuous phase served as a “control-switch” for recovery. The biobased PLA/ENR HSMP could serve as a promising alternative to the traditional materials for intelligent biomedical devices

    Biobased Heat-Triggered Shape-Memory Polymers Based on Polylactide/Epoxidized Natural Rubber Blend System Fabricated via Peroxide-Induced Dynamic Vulcanization: Co-continuous Phase Structure, Shape Memory Behavior, and Interfacial Compatibilization

    No full text
    A biobased heat-triggered shape-memory polymer (HSMP) consisting of polylactide (PLA) and epoxidized natural rubber (ENR) was fabricated by peroxide-induced dynamic vulcanization. The cross-linked ENR phase exhibits a continuous net-like structure embedded in the PLA phase, which is different from a conventional plastic/rubber system having the typical “sea–island” morphology in which vulcanized rubber particles were dispersed in plastic matrix. In situ interfacial compatibilization was confirmed by FTIR analysis. The shape-recovery ratios of the PLA/ENR HSMPs were significantly improved over 90%, compared to that (60–70%) of PLA. The shape fixing and memorizing capability of PLA/ENR HSMPs was realized by the glass transition of the PLA phase: cross-linked ENR continuous phase at rubbery state offered strong recovery driving force, improved interface provided effective stress-transferring during shape recovery, and PLA continuous phase served as a “control-switch” for recovery. The biobased PLA/ENR HSMP could serve as a promising alternative to the traditional materials for intelligent biomedical devices

    Fully Biobased Shape Memory Material Based on Novel Cocontinuous Structure in Poly(Lactic Acid)/Natural Rubber TPVs Fabricated via Peroxide-Induced Dynamic Vulcanization and in Situ Interfacial Compatibilization

    No full text
    Shape memory polymers (SMPs) based on fully biobased poly­(lactide) (PLA)/natural rubber (NR) thermoplastic vulcanizates (TPVs) were fabricated via peroxide-induced dynamic vulcanization. Simultaneously, in situ reactive compatibilization was achieved by PLA molecule grafting onto NR chains. Differing from the general concept of spherical rubber particles being formed after dynamic vulcanization, the cross-linked NR was found to be a “netlike” continuous phase in the PLA matrix. This novel structure explained the surprising shape memory property of PLA/NR TPVs well (shape fixities ∼ 100%, shape recoveries > 95%, and fast recovery speed < 15 s at the switching temperature, ∼60 °C): the cross-linked NR continuous phase offers strong resilience and the PLA phase serves as the heat-control switch. We envision that the “green” raw materials and excellent shape memory properties of the dynamically vulcanized PLA/NR SMPs will open up a wide range of potential applications in intelligent medical devices
    corecore