456 research outputs found

    Quality management: reduction of waiting time and efficiency enhancement in an ENT-university outpatients' department

    Get PDF
    Background Public health systems are confronted with constantly rising costs. Furthermore, diagnostic as well as treatment services become more and more specialized. These are the reasons for an interdisciplinary project on the one hand aiming at simplification of planning and scheduling patient appointments, on the other hand at fulfilling all requirements of efficiency and treatment quality. Methods As to understanding procedure and problem solving activities, the responsible project group strictly proceeded with four methodical steps: actual state analysis, analysis of causes, correcting measures, and examination of effectiveness. Various methods of quality management, as for instance opinion polls, data collections, and several procedures of problem identification as well as of solution proposals were applied. All activities were realized according to the requirements of the clinic's ISO 9001:2000 certified quality management system. The development of this project is described step by step from planning phase to inauguration into the daily routine of the clinic and subsequent control of effectiveness. Results Five significant problem fields could be identified. After an analysis of causes the major remedial measures were: installation of a patient telephone hotline, standardization of appointment arrangements for all patients, modification of the appointments book considering the reason for coming in planning defined working periods for certain symptoms and treatments, improvement of telephonic counselling, and transition to flexible time planning by daily updates of the appointments book. After implementation of these changes into the clinic's routine success could be demonstrated by significantly reduced waiting times and resulting increased patient satisfaction. Conclusion Systematic scrutiny of the existing organizational structures of the outpatients' department of our clinic by means of actual state analysis and analysis of causes revealed the necessity of improvement. According to rules of quality management correcting measures and subsequent examination of effectiveness were performed. These changes resulted in higher satisfaction of patients, referring colleagues and clinic staff the like. Additionally the clinic is able to cope with an increasing demand for appointments in outpatients' departments, and the clinic's human resources are employed more effectively

    Ursolic Acid Increases Skeletal Muscle and Brown Fat and Decreases Diet-Induced Obesity, Glucose Intolerance and Fatty Liver Disease

    Get PDF
    Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II), blood vessel recruitment (Vegfa) and autocrine/paracrine IGF-I signaling (Igf1). As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness

    High-Precision, Whole-Genome Sequencing of Laboratory Strains Facilitates Genetic Studies

    Get PDF
    Whole-genome sequencing is a powerful technique for obtaining the reference sequence information of multiple organisms. Its use can be dramatically expanded to rapidly identify genomic variations, which can be linked with phenotypes to obtain biological insights. We explored these potential applications using the emerging next-generation sequencing platform Solexa Genome Analyzer, and the well-characterized model bacterium Bacillus subtilis. Combining sequencing with experimental verification, we first improved the accuracy of the published sequence of the B. subtilis reference strain 168, then obtained sequences of multiple related laboratory strains and different isolates of each strain. This provides a framework for comparing the divergence between different laboratory strains and between their individual isolates. We also demonstrated the power of Solexa sequencing by using its results to predict a defect in the citrate signal transduction pathway of a common laboratory strain, which we verified experimentally. Finally, we examined the molecular nature of spontaneously generated mutations that suppress the growth defect caused by deletion of the stringent response mediator relA. Using whole-genome sequencing, we rapidly mapped these suppressor mutations to two small homologs of relA. Interestingly, stable suppressor strains had mutations in both genes, with each mutation alone partially relieving the relA growth defect. This supports an intriguing three-locus interaction module that is not easily identifiable through traditional suppressor mapping. We conclude that whole-genome sequencing can drastically accelerate the identification of suppressor mutations and complex genetic interactions, and it can be applied as a standard tool to investigate the genetic traits of model organisms

    Avoiding Dangerous Missense: Thermophiles Display Especially Low Mutation Rates

    Get PDF
    Rates of spontaneous mutation have been estimated under optimal growth conditions for a variety of DNA-based microbes, including viruses, bacteria, and eukaryotes. When expressed as genomic mutation rates, most of the values were in the vicinity of 0.003–0.004 with a range of less than two-fold. Because the genome sizes varied by roughly 104-fold, the mutation rates per average base pair varied inversely by a similar factor. Even though the commonality of the observed genomic rates remains unexplained, it implies that mutation rates in unstressed microbes reach values that can be finely tuned by evolution. An insight originating in the 1920s and maturing in the 1960s proposed that the genomic mutation rate would reflect a balance between the deleterious effect of the average mutation and the cost of further reducing the mutation rate. If this view is correct, then increasing the deleterious impact of the average mutation should be countered by reducing the genomic mutation rate. It is a common observation that many neutral or nearly neutral mutations become strongly deleterious at higher temperatures, in which case they are called temperature-sensitive mutations. Recently, the kinds and rates of spontaneous mutations were described for two microbial thermophiles, a bacterium and an archaeon. Using an updated method to extrapolate from mutation-reporter genes to whole genomes reveals that the rate of base substitutions is substantially lower in these two thermophiles than in mesophiles. This result provides the first experimental support for the concept of an evolved balance between the total genomic impact of mutations and the cost of further reducing the basal mutation rate

    To respond or not to respond - a personal perspective of intestinal tolerance

    Get PDF
    For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research

    Agent-Based Model of Therapeutic Adipose-Derived Stromal Cell Trafficking during Ischemia Predicts Ability To Roll on P-Selectin

    Get PDF
    Intravenous delivery of human adipose-derived stromal cells (hASCs) is a promising option for the treatment of ischemia. After delivery, hASCs that reside and persist in the injured extravascular space have been shown to aid recovery of tissue perfusion and function, although low rates of incorporation currently limit the safety and efficacy of these therapies. We submit that a better understanding of the trafficking of therapeutic hASCs through the microcirculation is needed to address this and that selective control over their homing (organ- and injury-specific) may be possible by targeting bottlenecks in the homing process. This process, however, is incredibly complex, which merited the use of computational techniques to speed the rate of discovery. We developed a multicell agent-based model (ABM) of hASC trafficking during acute skeletal muscle ischemia, based on over 150 literature-based rules instituted in Netlogo and MatLab software programs. In silico, trafficking phenomena within cell populations emerged as a result of the dynamic interactions between adhesion molecule expression, chemokine secretion, integrin affinity states, hemodynamics and microvascular network architectures. As verification, the model reasonably reproduced key aspects of ischemia and trafficking behavior including increases in wall shear stress, upregulation of key cellular adhesion molecules expressed on injured endothelium, increased secretion of inflammatory chemokines and cytokines, quantified levels of monocyte extravasation in selectin knockouts, and circulating monocyte rolling distances. Successful ABM verification prompted us to conduct a series of systematic knockouts in silico aimed at identifying the most critical parameters mediating hASC trafficking. Simulations predicted the necessity of an unknown selectin-binding molecule to achieve hASC extravasation, in addition to any rolling behavior mediated by hASC surface expression of CD15s, CD34, CD62e, CD62p, or CD65. In vitro experiments confirmed this prediction; a subpopulation of hASCs slowly rolled on immobilized P-selectin at speeds as low as 2 Β΅m/s. Thus, our work led to a fundamentally new understanding of hASC biology, which may have important therapeutic implications

    iNOS Ablation Does Not Improve Specific Force of the Extensor Digitorum Longus Muscle in Dystrophin-Deficient mdx4cv Mice

    Get PDF
    Nitrosative stress compromises force generation in Duchenne muscular dystrophy (DMD). Both inducible nitric oxide synthase (iNOS) and delocalized neuronal NOS (nNOS) have been implicated. We recently demonstrated that genetic elimination of nNOS significantly enhanced specific muscle forces of the extensor digitorum longus (EDL) muscle of dystrophin-null mdx4cv mice (Li D et al J. Path. 223:88–98, 2011). To determine the contribution of iNOS, we generated iNOS deficient mdx4cv mice. Genetic elimination of iNOS did not alter muscle histopathology. Further, the EDL muscle of iNOS/dystrophin DKO mice yielded specific twitch and tetanic forces similar to those of mdx4cv mice. Additional studies suggest iNOS ablation did not augment nNOS expression neither did it result in appreciable change of nitrosative stress markers in muscle. Our results suggest that iNOS may play a minor role in mediating nitrosative stress-associated force reduction in DMD

    Homopolymer tract length dependent enrichments in functional regions of 27 eukaryotes and their novel dependence on the organism DNA (G+C)% composition

    Get PDF
    BACKGROUND: DNA homopolymer tracts, poly(dA).poly(dT) and poly(dG).poly(dC), are the simplest of simple sequence repeats. Homopolymer tracts have been systematically examined in the coding, intron and flanking regions of a limited number of eukaryotes. As the number of DNA sequences publicly available increases, the representation (over and under) of homopolymer tracts of different lengths in these regions of different genomes can be compared. RESULTS: We carried out a survey of the extent of homopolymer tract over-representation (enrichment) and over-proportional length distribution (above expected length) primarily in the single gene documents, but including some whole chromosomes of 27 eukaryotics across the (G+C)% composition range from 20 – 60%. A total of 5.2 Γ— 10(7 )bases from 15,560 cleaned (redundancy removed) sequence documents were analyzed. Calculated frequencies of non-overlapping long homopolymer tracts were found over-represented in non-coding sequences of eukaryotes. Long poly(dA).poly(dT) tracts demonstrated an exponential increase with tract length compared to predicted frequencies. A novel negative slope was observed for all eukaryotes between their (G+C)% composition and the threshold length N where poly(dA).poly(dT) tracts exhibited over-representation and a corresponding positive slope was observed for poly(dG).poly(dC) tracts. Tract size thresholds where over-representation of tracts in different eukaryotes began to occur was between 4 – 11 bp depending upon the organism (G+C)% composition. The higher the GC%, the lower the threshold N value was for poly(dA).poly(dT) tracts, meaning that the over-representation happens at relatively lower tract length in more GC-rich surrounding sequence. We also observed a novel relationship between the highest over-representations, as well as lengths of homopolymer tracts in excess of their random occurrence expected maximum lengths. CONCLUSIONS: We discuss how our novel tract over-representation observations can be accounted for by a few models. A likely model for poly(dA).poly(dT) tract over-representation involves the known insertion into genomes of DNA synthesized from retroviral mRNAs containing 3' polyA tails. A proposed model that can account for a number of our observed results, concerns the origin of the isochore nature of eukaryotic genomes via a non-equilibrium GC% dependent mutation rate mechanism. Our data also suggest that tract lengthening via slip strand replication is not governed by a simple thermodynamic loop energy model

    Polymerase Ξ΄ replicates both strands after homologous recombination-dependent fork restart

    Get PDF
    To maintain genetic stability DNA must be replicated only once and replication completed even when individual replication forks are inactivated. Because fork inactivation is common, the passive convergence of an adjacent fork is insufficient to rescue all inactive forks. Thus, eukaryotic cells have evolved homologous recombination-dependent mechanisms to restart persistent inactive forks. Completing DNA synthesis via Homologous Recombination Restarted Replication (HoRReR) ensures cell survival, but at a cost. One such cost is increased mutagenesis caused by HoRReR being more error prone than canonical replication. This increased error rate implies that the HoRReR mechanism is distinct from that of a canonical fork. Here we exploit the fission yeast Schizosaccharomyces pombe to demonstrate that a DNA sequence duplicated by HoRReR during S phase is replicated semi-conservatively, but that both the leading and lagging strands are synthesised by DNA polymerase delta

    Assessing the Role of CD103 in Immunity to an Intestinal Helminth Parasite

    Get PDF
    In the intestine, the integrin CD103 is expressed on a subset of T regulatory (T(reg)) cells and a population of dendritic cells (DCs) that produce retinoic acid and promote immune homeostasis. However, the role of CD103 during intestinal helminth infection has not been tested.We demonstrate that CD103 is dispensable for the development of protective immunity to the helminth parasite Trichuris muris. While we observed an increase in the frequency of CD103(+) DCs in the lamina propria (LP) following acute high-dose infection with Trichuris, lack of CD103 had no effect on the frequency of CD11c(+) DCs in the LP or mesenteric lymph nodes (mLN). CD103-deficient (CD103(-/-)) mice develop a slightly increased and earlier T cell response but resolve infection with similar kinetics to control mice. Similarly, low-dose chronic infection of CD103(-/-) mice with Trichuris resulted in no significant difference in immunity or parasite burden. Absence of CD103 also had no effect on the frequency of CD4(+)CD25(+)Foxp3(+) T(reg) cells in the mLN or LP.These results suggest that CD103 is dispensable for intestinal immunity during helminth infection. Furthermore, lack of CD103 had no effect on DC or T(reg) recruitment or retention within the large intestine
    • …
    corecore