3 research outputs found

    High-Precision Ionosphere Monitoring Using Continuous Measurements from BDS GEO Satellites

    No full text
    The current constellation of the BeiDou Navigation Satellite System (BDS) consists of five geostationary earth orbit (GEO) satellites, five inclined geosynchronous satellite orbit (IGSO) satellites, and four medium earth orbit (MEO) satellites. The advantage of using GEO satellites to monitor the ionosphereis the almost motionless ionospheric pierce point (IPP), which is analyzed in comparison with the MEO and IGSO satellites. The results from the analysis of the observations using eight tracking sites indicate that the ionospheric total electron content (TEC) sequence derived from each GEO satellite at their respective fixed IPPs is always continuous. The precision of calculated vertical TEC (VTEC) using BDS B1/B2, B1/B3, and B2/B3 dual-frequency combinationsis compared and analyzed. The VTEC12 precision based on the B1/B2 dual-frequency measurements using the smoothed code and the raw code combination is 0.69 and 5.54 TECU, respectively, which is slightly higher than VTEC13 and much higher than VTEC23. Furthermore, the ionospheric monitoring results of site JFNG in the northern hemisphere, and CUT0 in the southern hemisphere during the period from 1 January to 31 December 2015 are presented and discussed briefly

    Precise Loran-C Signal Acquisition Based on Envelope Delay Correlation Method

    No full text
    The Loran-C system is an internationally standardized positioning, navigation, and timing service system. It is the most important backup and supplement for the global navigation satellite system (GNSS). However, the existing Loran-C signal acquisition methods are easily affected by noise and cross-rate interference (CRI). Therefore, this article proposes an envelope delay correlation acquisition method that, when combined with linear digital averaging (LDA) technology, can effectively suppress noise and CRI. The selection of key parameters and the performance of the acquisition method are analyzed through a simulation. When the signal-to-noise ratio (SNR) is −16 dB, the acquisition probability is more than 90% and the acquisition error is less than 1 μs. When the signal-to-interference ratio (SIR) of the CRI is −5 dB, the CRI can also be suppressed and the acquisition error is less than 5 μs. These results show that our acquisition method is accurate. The performance of the method is also verified by actual signals emitted by a Loran-C system. These test results show that our method can reliably detect Loran-C pulse group signals over distances up to 1500 km, even at low SNR. This will enable the modern Loran-C system to be a more reliable backup for the GNSS system
    corecore