19 research outputs found

    Current Performance and On-Going Improvements of the 8.2 m Subaru Telescope

    Full text link
    An overview of the current status of the 8.2 m Subaru Telescope constructed and operated at Mauna Kea, Hawaii, by the National Astronomical Observatory of Japan is presented. The basic design concept and the verified performance of the telescope system are described. Also given are the status of the instrument package offered to the astronomical community, the status of operation, and some of the future plans. The status of the telescope reported in a number of SPIE papers as of the summer of 2002 are incorporated with some updates included as of 2004 February. However, readers are encouraged to check the most updated status of the telescope through the home page, http://subarutelescope.org/index.html, and/or the direct contact with the observatory staff.Comment: 18 pages (17 pages in published version), 29 figures (GIF format), This is the version before the galley proo

    Particle dispersion in a horizontally vibrating vessel under microgravity

    No full text
    This paper presents a numerical study on the particle dispersion in a horizontally vibrating vessel with round corners under zero gravity. Such a vessel is specifically designed for particle handling in the outer space. The numerical model is validated by good agreement between the simulated and experimental results. The effects of key variables, including overall particle number concentration and vibration amplitude and frequency, are studied by a series of controlled numerical experiments. The particle flow in the vessel is analyzed by the detailed particle scale information obtained from the simulations. The results are used to reveal the mechanisms and clarify some speculations of the particle flow observed in the experiments. In particular, it is found that the conveying velocity generated by the round corner can be correlated to the velocity amplitude, and so is the overall kinetic energy of the particles inside the vessel. The findings are useful for the optimum design of an effective technique for particle transportation under microgravity
    corecore