27 research outputs found

    Single microwave-photon detector using an artificial Λ\Lambda-type three-level system

    Full text link
    Single photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five orders of magnitude less than their optical counterpart, making the efficient detection of single microwave photons extremely challenging. Here, we demonstrate the detection of a single microwave photon propagating through a waveguide. The detector is implemented with an "impedance-matched" artificial Λ\Lambda system comprising the dressed states of a driven superconducting qubit coupled to a microwave resonator. We attain a single-photon detection efficiency of 0.66±0.060.66 \pm 0.06 with a reset time of ∼400\sim 400~ns. This detector can be exploited for various applications in quantum sensing, quantum communication and quantum information processing.Comment: 5 pages (4 figures) + 4 pages (5 figures

    Power-dependent internal loss in Josephson bifurcation amplifiers

    Full text link
    We have studied nonlinear superconducting resonators: lambda/2 coplanar-waveguide (CPW) resonators with Josephson junctions (JJs) placed in the middle and lambda/4 CPW resonators terminated by JJs, which can be used for the qubit readout as "bifurcation amplifiers." The nonlinearity of the resonators arises from the Josephson junctions, and because of the nonlinearity, the resonators with appropriate parameters are expected to show a hysteretic response to the frequency sweep, or "bifurcation," when they are driven with a sufficiently large power. We designed and fabricated resonators whose resonant frequencies were around 10 GHz. We characterized the resonators at low temperatures, T<0.05 K, and confirmed that they indeed exhibited hysteresis. The sizes of the hysteresis, however, are sometimes considerably smaller than the predictions based on the loaded quality factor in the weak drive regime. When the discrepancy appears, it is mostly explained by taking into account the internal loss, which often increases in our resonators with increasing drive power in the relevant power range. As a possible origin of the power-dependent loss, the quasiparticle channel of conductance of the JJs is discussed.Comment: 8 pages, 9 figure

    Microwave characterization of tantalum superconducting resonators on silicon substrate with niobium buffer layer

    Full text link
    Tantalum thin films sputtered on unheated silicon substrates are characterized with microwaves at around 10 GHz in a 10 mK environment. We show that the phase of tantalum with a body-centered cubic lattice (α\alpha-Ta) can be grown selectively by depositing a niobium buffer layer prior to a tantalum film. The physical properties of the films, such as superconducting transition temperature and crystallinity, change markedly with the addition of the buffer layer. Coplanar waveguide resonators based on the composite film exhibit significantly enhanced internal quality factors compared with a film without the buffer layer. The internal quality factor approaches 2×1072\times 10^7 at a large-photon-number limit. While the quality factor decreases at the single-photon level owing to two-level system (TLS) loss, we have identified the primary cause of TLS loss to be the amorphous silicon layer at the film-substrate interface, which originates from the substrate cleaning before the film deposition rather than the film itself. The temperature dependence of the internal quality factors shows a marked rise below 200 mK, suggesting the presence of TLS-TLS interactions. The present low-loss tantalum films can be deposited without substrate heating and thus have various potential applications in superconducting quantum electronics.Comment: 6 pages, 4 figures + Supplementary Material (7 pages, 5 figures

    Single-photon-driven high-order sideband transitions in an ultrastrongly coupled circuit quantum electrodynamics system

    Get PDF
    We report the experimental observation of high-order sideband transitions at the single-photon level in a quantum circuit system of a flux qubit ultrastrongly coupled to a coplanar waveguide resonator. With the coupling strength reaching 10% of the resonator's fundamental frequency, we obtain clear signatures of higher-order red and first-order blue-sideband transitions, which are mainly due to the ultrastrong Rabi coupling. Our observation advances the understanding of ultrastrongly-coupled systems and paves the way to study high-order processes in the quantum Rabi model at the single-photon level.Comment: Accepted in Physical Review A. 12 pages, 6 figure
    corecore