13 research outputs found
結晶化ガラス顆粒の臨床応用
This reports tha development of bioactive glass ceramic particles and evaluates their use inclinical applications. 1. The subjects of the evaluation were 13 impacted teeth, 17 intramaxillary cysts (not including radicular cysts), and 7 atrophic mandibular alveolar ridges. 2. The results were classified into effective, slightly effective, ineffective, and harmful, a very high proportion, 33 or 89.3%,were judged effective or slightly effective. 3. None were evaluated to be harmful, showing the safety of the present material. Among the ineffective cases there were open wounds due to infection, leakage of the supplied material, and fistulation. In cases where inflammation had not disappeared at the supply there were cases where the particles had to be completely removed due to infection, It was determined the that this was not due to the material, but possidly due to the surgical procedures, as there were no further complications in the tretment. 4. From the results reported here, the bioactive glass ceramic material here was found to be useful in the articial bone needed after atrophic mandibular alveolar ridge surgery
Scanning probe anodization patterning of Si substrates covered with a self-assembled monolayer dependent on surface hydrophilicity
Contact-mode atomic force microscopy (AFM)-based anodization patterning was performed on silicon (Si) substrates covered with a self-assembled monolayer (SAM) in order to investigate effects of relative humidity (RH), surface wetability of the SAM, and probe-tip material on widths and heights of drawn lines. Three types of SAMs, that is, methyl-terminated, ester-terminated, and carboxyl-terminated SAMs, were prepared on hydrogen-terminated Si substrates by a thermal activation method. These SAMs were covalently fixed on the Si substrates through Si–C bonds without an interfacial oxide layer between the SAM and Si. Rh-coated and boron-doped conductive diamond-coated AFM probe tips were used for patterning with a positive sample bias of 10 V. Consequently, the region scanned with the AFM probe became protruded due to degradation of the SAM and anodization of Si. When the Rh-coated Si tip was used, the width of the protruded line increased with increasing RH on each SAM sample. The linewidth on the most hydrophobic methyl-terminated SAM was narrowest, while that on the most hydrophilic carboxylic SAM was widest. However there was no distinct difference in the pattern width at the patterning under low RH of 10%. In the case of patterning with the boron-doped conductive diamond-coated tip on the ester SAM, the width of the patterned line showed no clear increase with increasing RH. These pattern width changes were discussed in terms of the size of adsorbed water meniscus at the AFM-tip/sample junction as confirmed by force curve measurements; in the case of the boron-doped conductive diamond-coated tip which is rather more hydrophobic than the Rh-coated Si tip, the size of water meniscus hardly affected RH
Ulfracytochemical Localization of the Erythrocyte/ HepG2-Type Glucose Transporter (GLUT1) in Cells of the Blood-Retinal Barrier in the Rat
The blood-retinal barrier is part of the blood-ocular barrier. Retinal pigment epithelial cells connected by tight junctions serve as an outer blood-retinal barrier, and the nonfenestrated endothelial cells of blood vessels sealed by tight junctions serve as an inner blood-retinal barrier. Using antibodies specific for the erythrocyte/HepG2-type glucose transporter (GLUTl), one isoform of facilitated-diffusion glucose transporters, it was found, by ultrastructural cytochemical examination, that GLUTl in the rat was localized at both the apical and basolateral plasma membranes of retinal pigment epithelial cells. The fenestrated endothelial cells of the underlying choriocapillaries were negative for GLUTl. In the inner retina, GLUTl was found at both the luminal and contraluminal plasma membranes of endothelial cells. These observations show that GLUTl is concentrated at the critical plasma membranes of the blood-retinal barrier and may serve as the machinery for glucose transport across the barrier
Formation of uniform ferrocenyl-terminated monolayer covalently bonded to Si using reaction of hydrogen-terminated Si(111) surface with vinylferrocene/n-decane solution by visible-light excitation.
Electrochemically active self-assembled monolayers (SAM) have been successfully fabricated with atomic-scale uniformity on a silicon (Si)(111) surface by immobilizing vinylferrocene (VFC) molecules through Si-C covalent bonds. The reaction of VFC with the hydrogen-terminated Si (H-Si)(111) surface was photochemically promoted by irradiation of visible light on a H-Si(111) substrate immersed in n-decane solution of VFC. We found that aggregation and polymerization of VFC was avoided when n-decane was used as a solvent. Voltammetric quantification revealed that the surface density of ferrocenyl groups was 1.4×10(-10)molcm(-2), i.e., 11% in substitution rate of Si-H bond. VFC-SAMs were then formed by the optimized preparation method on n-type and p-type Si wafers. VFC-SAM on n-type Si showed positive photo-responsivity, while VFC-SAM on p-type Si showed negative photo-responsivity
Scanning probe anodization patterning of Si substrates covered with a self-assembled monolayer dependent on surface hydrophilicity
Contact-mode atomic force microscopy (AFM)-based anodization patterning was performed on silicon (Si) substrates covered with a self-assembled monolayer (SAM) in order to investigate effects of relative humidity (RH), surface wetability of the SAM, and probe-tip material on widths and heights of drawn lines. Three types of SAMs, that is, methyl-terminated, ester-terminated, and carboxyl-terminated SAMs, were prepared on hydrogen-terminated Si substrates by a thermal activation method. These SAMs were covalently fixed on the Si substrates through Si–C bonds without an interfacial oxide layer between the SAM and Si. Rh-coated and boron-doped conductive diamond-coated AFM probe tips were used for patterning with a positive sample bias of 10 V. Consequently, the region scanned with the AFM probe became protruded due to degradation of the SAM and anodization of Si. When the Rh-coated Si tip was used, the width of the protruded line increased with increasing RH on each SAM sample. The linewidth on the most hydrophobic methyl-terminated SAM was narrowest, while that on the most hydrophilic carboxylic SAM was widest. However there was no distinct difference in the pattern width at the patterning under low RH of 10%. In the case of patterning with the boron-doped conductive diamond-coated tip on the ester SAM, the width of the patterned line showed no clear increase with increasing RH. These pattern width changes were discussed in terms of the size of adsorbed water meniscus at the AFM-tip/sample junction as confirmed by force curve measurements; in the case of the boron-doped conductive diamond-coated tip which is rather more hydrophobic than the Rh-coated Si tip, the size of water meniscus hardly affected RH
Glucose intolerance associated with hypoxia in people living at high altitudes in the Tibetan highland
Objectives: To clarify the association between glucose intolerance and high altitudes (2900-4800 m) in a hypoxic environment in Tibetan highlanders and to verify the hypothesis that high altitude dwelling increases vulnerability to diabetes mellitus (DM) accelerated by lifestyle change or ageing. Design: Cross-sectional epidemiological study on Tibetan highlanders. Participants: We enrolled 1258 participants aged 40-87 years. The rural population comprised farmers in Domkhar (altitude 2900-3800 m) and nomads in Haiyan (3000-3100 m), Ryuho (4400 m) and Changthang (4300-4800 m). Urban area participants were from Leh (3300 m) and Jiegu (3700 m). Main outcome measure: Participants were classified into six glucose tolerance-based groups: DM, intermediate hyperglycaemia (IHG), normoglycaemia (NG), fasting DM, fasting IHG and fasting NG. Prevalence of glucose intolerance was compared in farmers, nomads and urban dwellers. Effects of dwelling at high altitude or hypoxia on glucose intolerance were analysed with the confounding factors of age, sex, obesity, lipids, haemoglobin, hypertension and lifestyle, using multiple logistic regression. Results: The prevalence of DM (fasting DM)/IHG (fasting IHG) was 8.9% (6.5%)/25.1% (12.7%), respectively, in all participants. This prevalence was higher in urban dwellers (9.5% (7.1%)/28.5% (11.7%)) and in farmers (8.5% (6.1%)/28.5% (18.3%)) compared with nomads (8.2% (5.7%)/15.7% (9.7%)) (p=0.0140/0.0001). Dwelling at high altitude was significantly associated with fasting IHG+fasting DM/fasting DM (ORs for >4500 and 3500-4499 m were 3.59/4.36 and 2.07/1.76 vs <3500 m, respectively). After adjusting for lifestyle change, hypoxaemia and polycythaemia were closely associated with glucose intolerance. Conclusions: Socioeconomic factors, hypoxaemia and the effects of altitudes ≥3500 m play a major role in the high prevalence of glucose intolerance in highlanders. Tibetan highlanders may be vulnerable to glucose intolerance, with polycythaemia as a sign of poor hypoxic adaptation, accelerated by lifestyle change and ageing