237 research outputs found

    Disproportionation Transition at Critical Interaction Strength: Na1/2_{1/2}CoO2_2

    Full text link
    Charge disproportionation (CD) and spin differentiation in Na1/2_{1/2}CoO2_2 are studied using the correlated band theory approach. The simultaneous CD and gap opening seen previously is followed through a first order charge disproportionation transition 2Co3.5+^{3.5+} \to Co3+^{3+}+Co4+^{4+}, whose ionic identities are connected more closely to spin (S=0, S=1/2 respectively) than to real charge. Disproportionation in the Co aga_g orbital is compensated by opposing charge rearrangement in other 3d orbitals. At the transition large and opposing discontinuities in the (all-electron) kinetic and potential energies are slightly more than balanced by a gain in correlation energy. The CD state is compared to characteristics of the observed charge-ordered insulating phase in Na1/2_{1/2}CoO2_2, suggesting the Coulomb repulsion value UU is concentration-dependent, with U(x=1/2)U(x=1/2)\simeq3.5 eV.Comment: 4 pages and 4 embedded figure

    Temperature dependent correlations in covalent insulators

    Full text link
    Motivated by the peculiar behavior of FeSi and FeSb2 we study the effect of local electronic correlations on magnetic, transport and optical properties in a specific type of band insulator, namely a covalent insulator. Investigating a minimum model of covalent insulator within a single-site dynamical mean-field approximation we are able to obtain the crossover from low temperature non-magnetic insulator to high-temperature paramagnetic metal with parameters realistic for FeSi and FeSb2 systems. Our results show that the behavior of FeSi does not imply microscopic description in terms of Kondo insulator (periodic Anderson model) as can be often found in the literature, but in fact reflects generic properties of a broader class of materials.Comment: 4 pages, 4 figure

    A Possible Phase Transition in beta-pyrochlore Compounds

    Full text link
    We investigate a lattice of interacting anharmonic oscillators by using a mean field theory and exact diagonalization. We construct an effective five-state hopping model with intersite repulsions as a model for beta-pyrochlore AOs_2O_6(A=K, Rb or Cs). We obtain the first order phase transition line from large to small oscillation amplitude phases as temperature decreases. We also discuss the possibility of a phase with local electric polarizations. Our theory can explain the origin of the mysterious first order transition in KOs_2O_6.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Magnetic groundstate and Fermi surface of bcc Eu

    Full text link
    Using spin-spiral technique within the full potential linearized augmented-plane-waves (LAPW) electronic structure method we investigate the magnon spectrum and N\'eel temperature of bcc Eu. Ground state corresponding to an incommensurate spin-spiral is obtained in agreement with experiment and previous calculations. We demonstrate that the magnetic coupling is primarily through the intra-atomic fsf-s and fdf-d exchange and Ruderman-Kittel-Kasuya-Yosida mechanism. We show that the existence of this spin-spiral is closely connected to a nesting feature of the Fermi surface which was not noticed before.Comment: 6 pages 8 figure

    NiO: Correlated Bandstructure of a Charge-Transfer Insulator

    Full text link
    The bandstructure of the prototypical charge-transfer insulator NiO is computed by using a combination of an {\it ab initio} bandstructure method and the dynamical mean-field theory with a quantum Monte-Carlo impurity solver. Employing a Hamiltonian which includes both Ni-d and O-p orbitals we find excellent agreement with the energy bands determined from angle-resolved photoemission spectroscopy. This solves a long-standing problem in solid state theory. Most notably we obtain the low-energy Zhang-Rice bands with strongly k-dependent orbital character discussed previously in the context of low-energy model theories.Comment: 4 pages, 3 figur

    Hidden covalent insulator and spin excitations in SrRu2_2O6_6

    Full text link
    The density functional plus dynamical mean-field theory is used to study the spin excitation spectra of SrRu2_2O6_6. A good quantitative agreement with experimental spin excitation spectra is found. Depending on the size of the Hund's coupling JHJ_H the systems chooses either Mott insulator or covalent insulator state when magnetic ordering is not allowed. We find that the nature of the paramagnetic state has negligible influence on the charge and spin excitation spectra. We find that antiferromagnetic correlations hide the covalent insulator state for realistic choices of the interaction parameters.Comment: 8 pages, 7 figure
    corecore