739 research outputs found
Effect of various particlization scenarios on anisotropic flow and particle production using UrQMD hybrid model
We discuss the effect of various particlization scenarios available in the
hybrid ultrarelativistic quantum molecular dynamics (UrQMD) event generator on
different observables in non-central ( 5--9 ) Au + Au collisions in
the beam energy range 1A-158A GeV. Particlization models switch fluid dynamic
description to the transport description using various hypersurface criteria.
In addition to particlization models, various equations-of-state (EoS) provided
by the UrQMD hybrid model were employed. The observables examined in this paper
include the excitation function of anisotropic coefficients such as directed
() and elliptic flow (), particle ratios of the species, and the
shape of net-proton rapidity spectra at mid-rapidity. The results obtained here
can help predict and compare the measurements provided by future experiments at
the Facility for Antiproton and Ion Research (FAIR) and the Nuclotron-based Ion
Collider fAcility (NICA) once the data becomes available. We also study the
most suitable combination of the particlization model and EoS, which best
describes the experimental measurements.Comment: 11 pages, 8 figure
Dynamics of Hot QCD Matter -- Current Status and Developments
The discovery and characterization of hot and dense QCD matter, known as
Quark Gluon Plasma (QGP), remains the most international collaborative effort
and synergy between theorists and experimentalists in modern nuclear physics to
date. The experimentalists around the world not only collect an unprecedented
amount of data in heavy-ion collisions, at Relativistic Heavy Ion Collider
(RHIC), at Brookhaven National Laboratory (BNL) in New York, USA, and the Large
Hadron Collider (LHC), at CERN in Geneva, Switzerland but also analyze these
data to unravel the mystery of this new phase of matter that filled a few
microseconds old universe, just after the Big Bang. In the meantime,
advancements in theoretical works and computing capability extend our wisdom
about the hot-dense QCD matter and its dynamics through mathematical equations.
The exchange of ideas between experimentalists and theoreticians is crucial for
the progress of our knowledge. The motivation of this first conference named
"HOT QCD Matter 2022" is to bring the community together to have a discourse on
this topic. In this article, there are 36 sections discussing various topics in
the field of relativistic heavy-ion collisions and related phenomena that cover
a snapshot of the current experimental observations and theoretical progress.
This article begins with the theoretical overview of relativistic
spin-hydrodynamics in the presence of the external magnetic field, followed by
the Lattice QCD results on heavy quarks in QGP, and finally, it ends with an
overview of experiment results.Comment: Compilation of the contributions (148 pages) as presented in the `Hot
QCD Matter 2022 conference', held from May 12 to 14, 2022, jointly organized
by IIT Goa & Goa University, Goa, Indi
Recommended from our members
Franck-Condon and Herzberg-Teller Signatures in Molecular Absorption and Emission Spectra.
Some molecules of chemical and biological significance possess vibrations with significant Herzberg-Teller (HT) couplings, which render the Franck-Condon (FC) approximation inadequate and cause the breakdown of the well-known mirror-image symmetry between linear absorption and emission spectra. Using a model two-state system with displaced harmonic potential surfaces, we show analytically that the FC-HT interference gives rise to asymmetric intensity modification, which has the same sign for all transitions on one side of the 0-0 absorption line and the opposite sign in the equivalent fluorescence transitions, while the trend is exactly reversed for all transitions on the other side the 0-0 line. We examine the dependence of the absorption-emission asymmetry on the mode frequency, Huang-Rhys factor, and dipole moment parameters to show the recovery of symmetry with particular combinations of parameters and a crossover from fluorescence to absorption dominance. We illustrate the analytical predictions through numerically exact calculations in models of one and two discrete vibrational modes and in the presence of a harmonic dissipative bath. In addition to homogeneous broadening effects, we identify large asymmetric shifts of absorption and emission band maxima, which can produce the illusion of unequal frequencies in the ground and excited potential surfaces as well as a nontrivial modulation of spectral asymmetry by temperature, which results from the enhancement of transitions on one side of the 0-0 line. These findings will aid the interpretation of experimental spectra in HT-active molecular systems
Interference between Franck-Condon and Herzberg-Teller Terms in the Condensed-Phase Molecular Spectra of Metal-Based Tetrapyrrole Derivatives.
The commonly used Franck-Condon (FC) approximation is inadequate for explaining the electronic spectra of compounds that possess vibrations with substantial Herzberg-Teller (HT) couplings. Metal-based tetrapyrrole derivatives, which are ubiquitous natural pigments, often exhibit prominent HT activity. In this paper, we compare the condensed phase spectra of zinc-tetraphenylporphyrin (ZnTPP) and zinc-phthalocyanine (ZnPc), which exhibit vastly different spectral features in spite of sharing a common tetrapyrrole backbone. The absorption and emission spectra of ZnTPP are characterized by a lack of mirror symmetry and nontrivial temperature dependence. In contrast, mirror symmetry is restored, and the nontrivial temperature-dependent features disappear in ZnPc. We attribute these differences to FC-HT interference, which is less pronounced in ZnPc because of a larger FC component in the dipole moment that leads to FC-dominated transitions. A single minimalistic FC-HT vibronic model reproduces all the experimental spectral features of these molecules. These observations suggest that FC-HT interference is highly susceptible to chemical modification
Mixed-Ligand Assisted Direct Synthesis of Redox-Active UiO-66-(SH)2 Metal Organic Frameworks and Their Behavioural Pattern in Reductive and Oxidative Environments
Synthesis, storage, and characterization of thiol functionalized metal-organic frameworks (MOFs) is highly challenging. However, they continue to be of great interest due to their broad spectrum of applications. In this work, for the first time, a solid solution approach has been adopted to dilute the thiol content in UiO-66-(SH)2 [Universitetet i Oslo] MOF by terephthalic acid linker without influencing its topology. The solid dilution had an overall impact on the crystallinity, defects, porosity and particle size of the UiO-66-(SH)2 framework. This study has the potential to significantly influence the syntheses of nanoscale thiol functionalized MOF materials and their applications in photocatalysis, water purification and drug delivery. This work also incorporates the performance study of the mixed-linker thiol MOFs under reductive and oxidative conditions. The rate of para-nitrophenolate hydrogenation under reductive conditions were mainly governed by the stability of the mixed-linker MOFs as catalyst supports. Whereas, post synthetic oxidation (PSO) was used to produce sulfonic acid tagged mixed-linker UiO-66 frameworks to probe the behavioral pattern in oxidative conditions of the parent mixed-linker thiol MOFs. The mixed-linker strategy was critical in preventing the frameworks from losing their crystallinity and porosity, upon oxidation. Thus, this work also paves the way for a general strategy to impart stability to thiol tagged UiO-66 framework having wide ranging applications
Variations in the right upper limb veins of a single cadaver
Abstract While doing the routine dissection for the undergraduate students in NRS Medical College, Kolkata, India, few vascular variations were found in the right upper limb of one seventy year old male cadaver. The dissection was done in September, in the year 2013 and variations were detected in the superficial and deep veins of the right superior extremity of the cadaver concerned. The right basilic vein joined the two brachial veins (venae comitantes of the brachial artery) separately in the right axilla, close to the shoulder joint, instead of at the lower margin of teres major or subscapularis muscle and formed the right axillary vein. On the left sided superior extremity no such venous variation was detected. This case report will contribute to the fields of Gross and Clinical Anatomy, at the same time may be of help to the surgeons and other clinicians for any invasive procedure or surgical approach in the upper limb like introduction of cardiac catheters and formation of arteriovenous fistula. So the case report has importance in surgery, cardiology and nephrology in addition to Anatomy
Synthetic Control of Exciton Dynamics in Bioinspired Cofacial Porphyrin Dimers.
Understanding how the complex interplay among excitonic interactions, vibronic couplings, and reorganization energy determines coherence-enabled transport mechanisms is a grand challenge with both foundational implications and potential payoffs for energy science. We use a combined experimental and theoretical approach to show how a modest change in structure may be used to modify the exciton delocalization, tune electronic and vibrational coherences, and alter the mechanism of exciton transfer in covalently linked cofacial Zn-porphyrin dimers (meso-beta linked ABm-β and meso-meso linked AAm-m). While both ABm-β and AAm-m feature zinc porphyrins linked by a 1,2-phenylene bridge, differences in the interporphyrin connectivity set the lateral shift between macrocycles, reducing electronic coupling in ABm-β and resulting in a localized exciton. Pump-probe experiments show that the exciton dynamics is faster by almost an order of magnitude in the strongly coupled AAm-m dimer, and two-dimensional electronic spectroscopy (2DES) identifies a vibronic coherence that is absent in ABm-β. Theoretical studies indicate how the interchromophore interactions in these structures, and their system-bath couplings, influence excitonic delocalization and vibronic coherence-enabled rapid exciton transport dynamics. Real-time path integral calculations reproduce the exciton transfer kinetics observed experimentally and find that the linking-modulated exciton delocalization strongly enhances the contribution of vibronic coherences to the exciton transfer mechanism, and that this coherence accelerates the exciton transfer dynamics. These benchmark molecular design, 2DES, and theoretical studies provide a foundation for directed explorations of nonclassical effects on exciton dynamics in multiporphyrin assemblies
- …