739 research outputs found

    Effect of various particlization scenarios on anisotropic flow and particle production using UrQMD hybrid model

    Full text link
    We discuss the effect of various particlization scenarios available in the hybrid ultrarelativistic quantum molecular dynamics (UrQMD) event generator on different observables in non-central (bb == 5--9 fmfm) Au + Au collisions in the beam energy range 1A-158A GeV. Particlization models switch fluid dynamic description to the transport description using various hypersurface criteria. In addition to particlization models, various equations-of-state (EoS) provided by the UrQMD hybrid model were employed. The observables examined in this paper include the excitation function of anisotropic coefficients such as directed (v1v_{1}) and elliptic flow (v2v_{2}), particle ratios of the species, and the shape of net-proton rapidity spectra at mid-rapidity. The results obtained here can help predict and compare the measurements provided by future experiments at the Facility for Antiproton and Ion Research (FAIR) and the Nuclotron-based Ion Collider fAcility (NICA) once the data becomes available. We also study the most suitable combination of the particlization model and EoS, which best describes the experimental measurements.Comment: 11 pages, 8 figure

    Dynamics of Hot QCD Matter -- Current Status and Developments

    Full text link
    The discovery and characterization of hot and dense QCD matter, known as Quark Gluon Plasma (QGP), remains the most international collaborative effort and synergy between theorists and experimentalists in modern nuclear physics to date. The experimentalists around the world not only collect an unprecedented amount of data in heavy-ion collisions, at Relativistic Heavy Ion Collider (RHIC), at Brookhaven National Laboratory (BNL) in New York, USA, and the Large Hadron Collider (LHC), at CERN in Geneva, Switzerland but also analyze these data to unravel the mystery of this new phase of matter that filled a few microseconds old universe, just after the Big Bang. In the meantime, advancements in theoretical works and computing capability extend our wisdom about the hot-dense QCD matter and its dynamics through mathematical equations. The exchange of ideas between experimentalists and theoreticians is crucial for the progress of our knowledge. The motivation of this first conference named "HOT QCD Matter 2022" is to bring the community together to have a discourse on this topic. In this article, there are 36 sections discussing various topics in the field of relativistic heavy-ion collisions and related phenomena that cover a snapshot of the current experimental observations and theoretical progress. This article begins with the theoretical overview of relativistic spin-hydrodynamics in the presence of the external magnetic field, followed by the Lattice QCD results on heavy quarks in QGP, and finally, it ends with an overview of experiment results.Comment: Compilation of the contributions (148 pages) as presented in the `Hot QCD Matter 2022 conference', held from May 12 to 14, 2022, jointly organized by IIT Goa & Goa University, Goa, Indi

    Interference between Franck-Condon and Herzberg-Teller Terms in the Condensed-Phase Molecular Spectra of Metal-Based Tetrapyrrole Derivatives.

    No full text
    The commonly used Franck-Condon (FC) approximation is inadequate for explaining the electronic spectra of compounds that possess vibrations with substantial Herzberg-Teller (HT) couplings. Metal-based tetrapyrrole derivatives, which are ubiquitous natural pigments, often exhibit prominent HT activity. In this paper, we compare the condensed phase spectra of zinc-tetraphenylporphyrin (ZnTPP) and zinc-phthalocyanine (ZnPc), which exhibit vastly different spectral features in spite of sharing a common tetrapyrrole backbone. The absorption and emission spectra of ZnTPP are characterized by a lack of mirror symmetry and nontrivial temperature dependence. In contrast, mirror symmetry is restored, and the nontrivial temperature-dependent features disappear in ZnPc. We attribute these differences to FC-HT interference, which is less pronounced in ZnPc because of a larger FC component in the dipole moment that leads to FC-dominated transitions. A single minimalistic FC-HT vibronic model reproduces all the experimental spectral features of these molecules. These observations suggest that FC-HT interference is highly susceptible to chemical modification

    Mixed-Ligand Assisted Direct Synthesis of Redox-Active UiO-66-(SH)2 Metal Organic Frameworks and Their Behavioural Pattern in Reductive and Oxidative Environments

    No full text
    Synthesis, storage, and characterization of thiol functionalized metal-organic frameworks (MOFs) is highly challenging. However, they continue to be of great interest due to their broad spectrum of applications. In this work, for the first time, a solid solution approach has been adopted to dilute the thiol content in UiO-66-(SH)2 [Universitetet i Oslo] MOF by terephthalic acid linker without influencing its topology. The solid dilution had an overall impact on the crystallinity, defects, porosity and particle size of the UiO-66-(SH)2 framework. This study has the potential to significantly influence the syntheses of nanoscale thiol functionalized MOF materials and their applications in photocatalysis, water purification and drug delivery. This work also incorporates the performance study of the mixed-linker thiol MOFs under reductive and oxidative conditions. The rate of para-nitrophenolate hydrogenation under reductive conditions were mainly governed by the stability of the mixed-linker MOFs as catalyst supports. Whereas, post synthetic oxidation (PSO) was used to produce sulfonic acid tagged mixed-linker UiO-66 frameworks to probe the behavioral pattern in oxidative conditions of the parent mixed-linker thiol MOFs. The mixed-linker strategy was critical in preventing the frameworks from losing their crystallinity and porosity, upon oxidation. Thus, this work also paves the way for a general strategy to impart stability to thiol tagged UiO-66 framework having wide ranging applications

    Variations in the right upper limb veins of a single cadaver

    No full text
    Abstract While doing the routine dissection for the undergraduate students in NRS Medical College, Kolkata, India, few vascular variations were found in the right upper limb of one seventy year old male cadaver. The dissection was done in September, in the year 2013 and variations were detected in the superficial and deep veins of the right superior extremity of the cadaver concerned. The right basilic vein joined the two brachial veins (venae comitantes of the brachial artery) separately in the right axilla, close to the shoulder joint, instead of at the lower margin of teres major or subscapularis muscle and formed the right axillary vein. On the left sided superior extremity no such venous variation was detected. This case report will contribute to the fields of Gross and Clinical Anatomy, at the same time may be of help to the surgeons and other clinicians for any invasive procedure or surgical approach in the upper limb like introduction of cardiac catheters and formation of arteriovenous fistula. So the case report has importance in surgery, cardiology and nephrology in addition to Anatomy

    Synthetic Control of Exciton Dynamics in Bioinspired Cofacial Porphyrin Dimers.

    No full text
    Understanding how the complex interplay among excitonic interactions, vibronic couplings, and reorganization energy determines coherence-enabled transport mechanisms is a grand challenge with both foundational implications and potential payoffs for energy science. We use a combined experimental and theoretical approach to show how a modest change in structure may be used to modify the exciton delocalization, tune electronic and vibrational coherences, and alter the mechanism of exciton transfer in covalently linked cofacial Zn-porphyrin dimers (meso-beta linked ABm-β and meso-meso linked AAm-m). While both ABm-β and AAm-m feature zinc porphyrins linked by a 1,2-phenylene bridge, differences in the interporphyrin connectivity set the lateral shift between macrocycles, reducing electronic coupling in ABm-β and resulting in a localized exciton. Pump-probe experiments show that the exciton dynamics is faster by almost an order of magnitude in the strongly coupled AAm-m dimer, and two-dimensional electronic spectroscopy (2DES) identifies a vibronic coherence that is absent in ABm-β. Theoretical studies indicate how the interchromophore interactions in these structures, and their system-bath couplings, influence excitonic delocalization and vibronic coherence-enabled rapid exciton transport dynamics. Real-time path integral calculations reproduce the exciton transfer kinetics observed experimentally and find that the linking-modulated exciton delocalization strongly enhances the contribution of vibronic coherences to the exciton transfer mechanism, and that this coherence accelerates the exciton transfer dynamics. These benchmark molecular design, 2DES, and theoretical studies provide a foundation for directed explorations of nonclassical effects on exciton dynamics in multiporphyrin assemblies
    • …
    corecore