5 research outputs found

    Regression Trees for Longitudinal Data

    Get PDF
    While studying response trajectory, often the population of interest may be diverse enough to exist distinct subgroups within it and the longitudinal change in response may not be uniform in these subgroups. That is, the timeslope and/or influence of covariates in longitudinal profile may vary among these different subgroups. For example, Raudenbush (2001) used depression as an example to argue that it is incorrect to assume that all the people in a given population would be experiencing either increasing or decreasing levels of depression. In such cases, traditional linear mixed effects model (assuming common parametric form for covariates and time) is not directly applicable for the entire population as a group-averaged trajectory can mask important subgroup differences. Our aim is to identify and characterize longitudinally homogeneous subgroups based on the combination of baseline covariates in the most parsimonious way. This goal can be achieved via constructing regression tree for longitudinal data using baseline covariates as partitioning variables. We have proposed LongCART algorithm to construct regression tree for the longitudinal data. In each node, the proposed LongCART algorithm determines the need for further splitting (i.e. whether parameter(s) of longitudinal profile is influenced by any baseline attributes) via parameter instability tests and thus the decision of further splitting is type-I error controlled. We have obtained the asymptotic results for the proposed instability test and examined finite sample behavior of the whole algorithm through simulation studies. Finally, we have applied the LongCART algorithm to study the longitudinal changes in choline level among HIV patients

    Advanced Modeling of Longitudinal Spectroscopy Data

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Magnetic resonance (MR) spectroscopy is a neuroimaging technique. It is widely used to quantify the concentration of important metabolites in a brain tissue. Imbalance in concentration of brain metabolites has been found to be associated with development of neurological impairment. There has been increasing trend of using MR spectroscopy as a diagnosis tool for neurological disorders. We established statistical methodology to analyze data obtained from the MR spectroscopy in the context of the HIV associated neurological disorder. First, we have developed novel methodology to study the association of marker of neurological disorder with MR spectrum from brain and how this association evolves with time. The entire problem fits into the framework of scalar-on-function regression model with individual spectrum being the functional predictor. We have extended one of the existing cross-sectional scalar-on-function regression techniques to longitudinal set-up. Advantage of proposed method includes: 1) ability to model flexible time-varying association between response and functional predictor and (2) ability to incorporate prior information. Second part of research attempts to study the influence of the clinical and demographic factors on the progression of brain metabolites over time. In order to understand the influence of these factors in fully non-parametric way, we proposed LongCART algorithm to construct regression tree with longitudinal data. Such a regression tree helps to identify smaller subpopulations (characterized by baseline factors) with differential longitudinal profile and hence helps us to identify influence of baseline factors. Advantage of LongCART algorithm includes: (1) it maintains of type-I error in determining best split, (2) substantially reduces computation time and (2) applicable even observations are taken at subject-specific time-points. Finally, we carried out an in-depth analysis of longitudinal changes in the brain metabolite concentrations in three brain regions, namely, white matter, gray matter and basal ganglia in chronically infected HIV patients enrolled in HIV Neuroimaging Consortium study. We studied the influence of important baseline factors (clinical and demographic) on these longitudinal profiles of brain metabolites using LongCART algorithm in order to identify subgroup of patients at higher risk of neurological impairment.Partial research support was provided by the National Institutes of Health grants U01-MH083545, R01-CA126205 and U01-CA08636

    Quadratic Bootstrap in Logistic Regression

    No full text
    Not AvailableIn this paper, quadratic bootstrap estimation procedure for improved estimation under logistic regression set up with one regressor based on Claeskens et al. (2003) for classification of data pertaining to the area of agricultural ergonomics have been discussed. Here, presence or absence of discomfort for the farm labourers in operating farm machineries has been considered as the dependent variable. A comparison in terms of confidence interval and classificatory ability of the logistic regression model between the usual maximum likelihood estimator and the quadratic bootstrap based estimator have been made based on real experimental situation in the field of agricultural ergonomics. The performance of quadratic bootstrap based estimator has been found to be better both in terms of length of the confidence interval of the parameter and classificatory ability of the model. Further, a bias corrected estimator based on quadratic bootstrap estimator following Claeskens et al. (2003) has also been obtained. A simulation study has been carried out which illustrates the improvement of bias corrected estimation over the usual maximum likelihood approach in terms of mean square error of the estimators and efficiency factor.Not Availabl
    corecore