2 research outputs found

    Challenges and opportunities in 2D heterostructures for electronic and optoelectronic devices

    Get PDF
    Two-dimensional (2D) materials such as graphene, transition metal dichalcogenides (TMDs), and their heterojunctions are prospective materials for future electronics, optoelectronics, and quantum technologies. Assembling different 2D layers offers unique ways to control optical, electrical, thermal, magnetic, and topological phenomena. Controlled fabrications of electronic grade 2D heterojunctions are of paramount importance. Here, we enlist novel and scalable strategies to fabricate 2D vertical and lateral heterojunctions, consisting of semiconductors, metals, and/or semimetals. Critical issues that need to be addressed are the device-to-device variations, reliability, stability, and performances of 2D heterostructures in electronic and optoelectronic applications. Also, stacking order-dependent formation of moir\ue9 excitons in 2D heterostructures are emerging with exotic physics and new opportunities. Furthermore, the realization of 2D heterojunction-based novel devices, including excitonic and valleytronic transistors, demands more extensive research efforts for real-world applications. We also outline emergent phenomena in 2D heterojunctions central to nanoelectronics, optoelectronics, spintronics, and energy applications

    Hyperspectral photoluminescence and reflectance microscopy of 2D materials

    Full text link
    Optical micro-spectroscopy is an invaluable tool for studying and characterizing samples ranging from classical semiconductors to low-dimensional materials and heterostructures. To date, most implementations are based on point-scanning techniques, which are flexible and reliable but slow. Here, we describe a setup for highly parallel acquisition of hyperspectral reflection and photoluminescence microscope images using a push-broom technique. Spatial as well as spectral distortions are characterized and their digital corrections are presented. We demonstrate close-to diffraction-limited spatial imaging performance and a spectral resolution limited by the spectrograph. The capabilities of the setup are demonstrated by recording a hyperspectral photoluminescence map of a CVD-grown MoSe2_2-WSe2_2 lateral heterostructure, from which we extract the luminescence energies, intensities and peak widths across the interface
    corecore