4 research outputs found

    The effect of technological oil spill in soil within electrical generation substations, analysed by ecological regime in the context of relief properties

    Get PDF
    Technological oil spills within electrical substations are the source of considerable environmental contamination. The aim of this study is to evaluate the relation between phytoindication assessments of ecological factors and geomorphological covariates and investigate the effect of the technological oil spill on ecological regimes within electrical substations. During the fieldwork 175 geobotanical releves were analysed in the years 2016–2017 within Dnipropetrovsk region (Ukraine). Within each electrical substation the geobotanical prospecting was conducted both in plots with undisturbed vegetation cover (control, the plot size 3 × 6 m) and in plots with technological oil spill (pollution, plot size 3 × 3 m). Phytoindication assessment of the following ecological factors was made: soil water regime, soil aeration, soil acidity, total salt regime, carbonate content in the soil, nitrogen content in the soil, radiation balance, aridity or humidity, continental climate, cryo-climate, light regime. HydroSHEDS data were taken for the basis for creating a digital elevation model with resolution of the data layer 15 arcseconds. The phytoindication assessments of the ecological regimes are characterized by correlation of geomorphological properties. The soil humidity is characterized by statistically significant negative correlation with the topographic position index and positive correlation with the vector ruggedness measure. The variability of damping correlates with four geomorphological predictors. This environmental regime has positive correlation with digital elevation model and diffuse insolation and negative correlation with topographic wetness index and direct insolation. The soil acidity of the edaphotope within Dnipropetrovsk region correlates with statistical signiicance with the vector ruggedness measure. The soil humidity of the edaphotope is associated with variation of the topographic wetness index, direct insolation, diffuse insolation and entropy of terrain diversity. The highest carbonate content in the soil correlates with higher risks of erosion, which is characterized by loss of soil and vertical distance to channel network. The nitrogen content in the soil is very sensitive to geomorphological features of the area. This results in the correlation of this indicator with six geomorphological predictors. Obviously, the most favourable supply of the nitrogen content in the soil is formed on upland areas. This allows positive correlation of the phytoindication assessment of the nitrogen content in the soil and the height relief. The use of relief variable as the covariate revealed the nature of the impact of soil contamination on ecological factors. Technological oil pollution leads to deterioration of water regime, reducing the availability of plant available forms of nitrogen and deterioration of soil aeration. There are also changes in microclimatic properties. There are more extreme thermal regimes and greater level of illumination. A key task for further research is to study the influence of relief features on the degree of negative transformation of soil due to technological oil pollution

    Tree canopy affects soil macrofauna spatial patterns on broad- and meso- scale levels in an Eastern European poplar-willow forest in the floodplain of the River Dnipro

    Get PDF
    This paper tested the hypothesis that the placement of trees in the floodplain ecosystem leads to multiscale spatial structuring and plays an important role in formation of the spatial patterns of the soil macrofauna. The research polygon was laid in an Eastern European poplar-willow forest in the floodplain of the River Dnipro. The litter macrofauna was manually collected from the soil samples. The distances of the sampling locations from the nearest individual of each tree species were applied to obtain a measure of the overstorey spatial structure. The pure effect of tree structured space on the soil animal community was presented by the broad-scale and meso-scale components. The soil animal community demonstrated patterns varying in tree structured space. The tree induced spatial heterogeneity was revealed to effect on the vertical stratification of the soil animal community. The complex nature of the soil animal community variability depending on the distance from trees was depended on the interaction of tree species in their effects on soil animals. The importance of the spatial structures that interact with soil, plants and tree factors in shaping soil macrofauna communities was shown

    Tree canopy affects soil macrofauna spatial patterns on broad- and meso- scale levels in an Eastern European poplar-willow forest in the floodplain of the River Dnipro

    Get PDF
    This paper tested the hypothesis that the placement of trees in the floodplain ecosystem leads to multiscale spatial structuring and plays an important role in formation of the spatial patterns of the soil macrofauna. The research polygon was laid in an Eastern European poplar-willow forest in the floodplain of the River Dnipro. The litter macrofauna was manually collected from the soil samples. The distances of the sampling locations from the nearest individual of each tree species were applied to obtain a measure of the overstorey spatial structure. The pure effect of tree structured space on the soil animal community was presented by the broad-scale and meso-scale components. The soil animal community demonstrated patterns varying in tree structured space. The tree induced spatial heterogeneity was revealed to effect on the vertical stratification of the soil animal community. The complex nature of the soil animal community variability depending on the distance from trees was depended on the interaction of tree species in their effects on soil animals. The importance of the spatial structures that interact with soil, plants and tree factors in shaping soil macrofauna communities was shown

    The role of edaphic, vegetational and spatial factors in structuring soil animal communities in a floodplain forest of the Dnipro river

    No full text
    This paper examines the role of ecological factors, derived from principal component analysis performed on edaphic and vegetational dataset as well as spatial variables, in structuring the soil macrofauna community of the Dnipro floodplain within the ‘Dnipro-Orilsky’ Nature Reserve (Ukraine). The soil macrofauna was defined as invertebrates visible to the naked eye (macroscopic organisms). The test points formed a regular grid with a mesh size of 3 m with 7 × 15 dimensions. Thus, the total test point number was 105. At each point, soil-zoological samples of 0.25 × 0.25 m were taken for quantifying the soil macrofauna. The spatial structure was modeled by a set of independent spatial patterns obtained by means of principal coordinates of neighbor matrices analysis (PCNM-variables). Spatial PCNM-variables explain significantly more variations of the community (19.9%) than edaphic factors (4.1%) and vegetation factors (3.2%). Spatial and combined environmental and spatial effects were divided into three components: broad-scale component was characterized by periodicity of spatial variation with a wavelength of 24.0–44.5 m, medium-scale – 11.1–20 m, fine-scale – 6.6–11.0 m. For a broad-scale component, environmental factors of a vegetational nature are more important, for medium-scale, edaphic factors are more important, for fine-scale, both vegetation and edaphic are important. For litter-dwelling animals, the most characteristic spatial patterns are on the broad and medium-scale levels. For endogeic and anecic animals, the most significant variability is on the fine-scale level
    corecore