2 research outputs found

    Ototoxicity in children receiving cisplatin chemotherapy

    Get PDF
    Purpose : Cisplatin is highly effective for the treatment of solid tumors in children. However, the clinical use of cisplatin is limited by its ototoxicity. The aim of this study was to evaluate the ototoxicity in children treated with cisplatin. Methods : We performed a single institution retrospective analysis of pediatric oncology patients who received cisplatin therapy between January 2001 and January 2008. Thirty-seven patients with sufficient medical and audiologic data were included in this study. Results : The median age at the time of diagnosis was 10.7 (range 3.8&amp&#59;#8211&#59;16.7) years. There were 16 males and 21 females. The underlying diseases were osteosarcoma (15 cases), medulloblastoma (14 cases), germ cell tumors (7 cases), and hepatoblastoma (1 case). The median individual dose was 100 mg/m2/cycle (56-200). The median cumulative dose was 480 mg/m2 (200-1,490). Sixteen patients (43%) received cranial radiotherapy. Of the 37 patients, 17 developed hearing loss, leading to an overall incidence of 46%. Logistic regression showed that age at treatment (P=0.04) and cumulative dose of cisplatin (P=0.005) were the significant risk factors in predicting hearing loss in children treated with cisplatin. In all the patients who had hearing loss, there was neither improvement nor aggravation during the follow-up (3&amp&#59;#8211&#59;68 months). Conclusion : The cumulative dose of cisplatin (&amp&#59;gt&#59;500 mg/m2) and younger age at treatment (&amp&#59;lt&#59;12 years) were 2 most important risk factors for ototoxicity in patients treated with cisplatin. Serial audiometric evaluations are needed in the patients with risk factors during and after cisplatin treatment

    The Eruption of the Candidate Young Star ASASSN-15qi

    Get PDF
    Outbursts on young stars are usually interpreted as accretion bursts caused by instabilities in the disk or the star-disk connection. However, some protostellar outbursts may not fit into this framework. In this paper, we analyze optical and near-infrared spectra and photometry to characterize the 2015 outburst of the probable young star ASASSN-15qi. The ∼3.5\sim 3.5 mag brightening in the VV band was sudden, with an unresolved rise time of less than one day. The outburst decayed exponentially by 1 mag for 6 days and then gradually back to the pre-outburst level after 200 days. The outburst is dominated by emission from ∼10,000\sim10,000 K gas. An explosive release of energy accelerated matter from the star in all directions, seen in a spectacular cool, spherical wind with a maximum velocity of 1000 km/s. The wind and hot gas both disappeared as the outburst faded and the source the source returned to its quiescent F-star spectrum. Nebulosity near the star brightened with a delay of 10-20 days. Fluorescent excitation of H2_2 is detected in emission from vibrational levels as high as v=11v=11, also with a possible time delay in flux increase. The mid-infrared spectral energy distribution does not indicate the presence of warm dust emission, although the optical photospheric absorption and CO overtone emission could be related to a gaseous disk. Archival photometry reveals a prior outburst in 1976. Although we speculate about possible causes for this outburst, none of the explanations are compelling
    corecore