2,523 research outputs found
Spectroscopic signatures of the Larkin-Ovchinnikov state in the conductance characteristics of a normal-metal/superconductor junction
Using a discrete-lattice approach, we calculate the conductance spectra
between a normal metal and an s-wave Larkin-Ovchinnikov (LO) superconductor,
with the junction interface oriented {\em along} the direction of the
order-parameter (OP) modulation. The OP sign reversal across one single nodal
line can induce a sizable number of zero-energy Andreev bound states around the
nodal line, and a hybridized midgap-states band is formed amid a
momentum-dependent gap as a result of the periodic array of nodal lines in the
LO state. This band-in-gap structure and its anisotropic properties give rise
to distinctive features in both the point-contact and tunneling spectra as
compared with the BCS and Fulde-Ferrell cases. These spectroscopic features can
serve as distinguishing signatures of the LO state.Comment: 8 pages, 5 figures; version as publishe
Internal Anisotropy of Collision Cascades
We investigate the internal anisotropy of collision cascades arising from the
branching structure. We show that the global fractal dimension cannot give an
adequate description of the geometrical structure of cascades because it is
insensitive to the internal anisotropy. In order to give a more elaborate
description we introduce an angular correlation function, which takes into
account the direction of the local growth of the branches of the cascades. It
is demonstrated that the angular correlation function gives a quantitative
description of the directionality and the interrelation of branches. The power
law decay of the angular correlation is evidenced and characterized by an
exponent and an angular correlation length different from the radius of
gyration. It is demonstrated that the overlapping of subcascades has a strong
effect on the angular correlation.Comment: RevteX, 8 pages, 6 .eps figures include
Dynamic model of fiber bundles
A realistic continuous-time dynamics for fiber bundles is introduced and
studied both analytically and numerically. The equation of motion reproduces
known stationary-state results in the deterministic limit while the system
under non-vanishing stress always breaks down in the presence of noise.
Revealed in particular is the characteristic time evolution that the system
tends to resist the stress for considerable time, followed by sudden complete
rupture. The critical stress beyond which the complete rupture emerges is also
obtained
Universality at integer quantum Hall transitions
We report in this paper results of experimental and theoretical studies of
transitions between different integer quantum Hall phases, as well as
transition between the insulating phase and quantum Hall phases at high
magnetic fields. We focus mainly on universal properties of the transitions. We
demonstrate that properly defined conductivity tensor is universal at the
transitions. We also present numerical results of a non-interacting electron
model, which suggest that the Thouless conductance is universal at integer
quantum Hall transitions, just like the conductivity tensor. Finite temperature
and system size effects near the transition point are also studied.Comment: 20 pages, 15 figure
Effect of time delay on the onset of synchronization of the stochastic Kuramoto model
We consider the Kuramoto model of globally coupled phase oscillators with
time-delayed interactions, that is subject to the Ornstein-Uhlenbeck (Gaussian)
colored or the non-Gaussian colored noise. We investigate numerically the
interplay between the influences of the finite correlation time of noise
and the time delay on the onset of the synchronization process. Both
cases for identical and nonidentical oscillators had been considered. Among the
obtained results for identical oscillators is a large increase of the
synchronization threshold as a function of time delay for the colored
non-Gaussian noise compared to the case of the colored Gaussian noise at low
noise correlation time . However, the difference reduces remarkably for
large noise correlation times. For the case of nonidentical oscillators, the
incoherent state may become unstable around the maximum value of the threshold
(as a function of time delay) even at lower coupling strength values in the
presence of colored noise as compared to the noiseless case. We had studied the
dependence of the critical value of the coupling strength (the threshold of
synchronization) on given parameters of the stochastic Kuramoto model in great
details and presented results for possible cases of colored Gaussian and
non-Gaussian noises.Comment: 19 pages with 7 figure
Scaling of impact fragmentation near the critical point
We investigated two-dimensional brittle fragmentation with a flat impact
experimentally, focusing on the low impact energy region near the
fragmentation-critical point. We found that the universality class of
fragmentation transition disagreed with that of percolation. However, the
weighted mean mass of the fragments could be scaled using the pseudo-control
parameter multiplicity. The data for highly fragmented samples included a
cumulative fragment mass distribution that clearly obeyed a power-law. The
exponent of this power-law was 0.5 and it was independent of sample size. The
fragment mass distributions in this regime seemed to collapse into a unified
scaling function using weighted mean fragment mass scaling. We also examined
the behavior of higher order moments of the fragment mass distributions, and
obtained multi-scaling exponents that agreed with those of the simple biased
cascade model.Comment: 6 pages, 6 figure
Investigation for the puzzling abundance pattern of the neutron-capture elements in the ultra metal-poor star: CS 30322-023
The s-enhanced and very metal-poor star CS 30322-023 shows a puzzling
abundance pattern of the neutron-capture elements, i.e. several neutron-capture
elements such as Ba, Pb etc. show enhancement, but other neutron-capture
elements such as Sr, Eu etc. exhibit deficient with respect to iron. The study
to this sample star could make people gain a better understanding of s- and
r-process nucleosynthesis at low metallicity. Using a parametric model, we find
that the abundance pattern of the neutron-capture elements could be best
explained by a star that was polluted by an AGB star and the CS 30322-023
binary system formed in a molecular cloud which had never been polluted by
r-process material. The lack of r-process material also indicates that the AGB
companion cannot have undergone a type-1.5 supernova, and thus must have had an
initial mass below 4.0M, while the strong N overabundance and the
absence of a strong C overabundance indicate that the companion's initial mass
was larger than 2.0M. The smaller s-process component coefficient of
this star illustrates that there is less accreted material of this star from
the AGB companion, and the sample star should be formed in the binary system
with larger initial orbital separation where the accretion-induced collapse
(AIC) mechanism can not work.Comment: 13 pages, 2 figure
Conductance characteristics between a normal metal and a two-dimensional Fulde-Ferrell-Larkin-Ovchinnikov superconductor: the Fulde-Ferrell state
The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state has received renewed
interest recently due to the experimental indication of its presence in
CeCoIn, a quasi 2-dimensional (2D) d-wave superconductor. However direct
evidence of the spatial variation of the superconducting order parameter, which
is the hallmark of the FFLO state, does not yet exist. In this work we explore
the possibility of detecting the phase structure of the order parameter
directly using conductance spectroscopy through micro-constrictions, which
probes the phase sensitive surface Andreev bound states of d-wave
superconductors. We employ the Blonder-Tinkham-Klapwijk formalism to calculate
the conductance characteristics between a normal metal (N) and a 2D - or
-wave superconductor in the Fulde-Ferrell state, for all barrier
parameter from the point contact limit () to the tunneling limit (). We find that the zero-bias conductance peak due to these surface
Andreev bound states observed in the uniform d-wave superconductor is split and
shifted in the Fulde-Ferrell state. We also clarify what weighted bulk density
of states is measured by the conductance in the limit of large .Comment: 10 pages, 13 figure
LmCYP4G102: An oenocyte-specific cytochrome P450 gene required for cuticular waterproofing in the migratory locust, Locusta migratoria
Citation: Yu, Z. T., Zhang, X. Y., Wang, Y. W., Moussian, B., Zhu, K. Y., Li, S., . . . Zhang, J. Z. (2016). LmCYP4G102: An oenocyte-specific cytochrome P450 gene required for cuticular waterproofing in the migratory locust, Locusta migratoria. Scientific Reports, 6, 11. doi:10.1038/srep29980Cytochrome P450 superfamily proteins play important roles in detoxification of xenobiotics and during physiological and developmental processes. To contribute to our understanding of this large gene family in insects, we have investigated the function of the cytochrome P450 gene LmCYP4G102 in the migratory locust Locusta migratoria. Suppression of LmCYP4G102 expression by RNA interference (RNAi) does not interfere with moulting but causes rapid loss of body weight - probably due to massive loss of water, and death soon after moulting. Accordingly, maintaining these animals at 90% relative humidity prevented lethality. Consistently, RNAi against LmCYP4G102 provoked a decrease in the content of cuticular alkanes, which as an important fraction of cuticular hydrocarbons have been shown to confer desiccation resistance. In addition, the cuticle of LmCYP4G102- knockdown locusts was fragile and easier deformable than in control animals. Presumably, this phenotype is due to decreased amounts of cuticular water that is reported to modulate cuticle mechanics. Interestingly, LmCYP4G102 was not expressed in the epidermis that produces the cuticle but in the sub-epdiermal hepatocyte-like oenocytes. Together, our results suggest that the oenocyte-specific LmCYP4G102 plays a critical role in the synthesis of cuticular hydrocarbons, which are important for cuticle waterproofing and mechanical stability in L. migratori
Entanglement and quantum phase transition in alternating XY spin chain with next-nearest neighbour interactions
By using the method of density-matrix renormalization-group to solve the
different spin-spin correlation functions, the nearest-neighbouring
entanglement(NNE) and next-nearest-neighbouring entanglement(NNNE) of
one-dimensional alternating Heisenberg XY spin chain is investigated in the
presence of alternating nearest neighbour interactions of exchange couplings,
external magnetic fields and next-nearest neighbouring interactions. For
dimerized ferromagnetic spin chain, NNNE appears only above the critical
dimerized interaction, meanwhile, the dimerized interaction effects quantum
phase transition point and improves NNNE to a large value. We also study the
effect of ferromagnetic or antiferromagnetic next-nearest neighboring (NNN)
interactions on the dynamics of NNE and NNNE. The ferromagnetic NNN interaction
increases and shrinks NNE below and above critical frustrated interaction
respectively, while the antiferromagnetic NNN interaction always decreases NNE.
The antiferromagnetic NNN interaction results to a larger value of NNNE in
comparison to the case when the NNN interaction is ferromagnetic.Comment: 13 pages, 4 figures,. accepted by Chinese Physics B 2008 11 (in
press
- âŠ