5,781 research outputs found

    Rigorous Proof of Pseudospin Ferromagnetism in Two-Component Bosonic Systems with Component-Independent Interactions

    Full text link
    For a two-component bosonic system, the components can be mapped onto a pseudo-spin degree of freedom with spin quantum number S=1/2. We provide a rigorous proof that for a wide-range of real Hamiltonians with component independent mass and interaction, the ground state is a ferromagnetic state with pseudospin fully polarized. The spin-wave excitations are studied and found to have quadratic dispersion relations at long wave length.Comment: 4 pages, no figur

    Long-term evolution of FU Orionis objects at infrared wavelengths

    Full text link
    We investigate the brightness evolution of 7 FU Orionis systems in the 1-100 micrometer wavelength range using data from the Infrared Space Observatory (ISO). The ISO measurements were supplemented with 2MASS and MSX observations performed in the same years as the ISO mission (1995-98). The spectral energy distributions (SEDs) based on these data points were compared with earlier ones derived from the IRAS photometry as well as from ground-based observations carried out around the epoch 1983. In 3 cases (Z CMa, Parsamian 21, V1331 Cyg) no difference between the two epochs was seen within the measurement uncertainties. V1057 Cyg, V1515 Cyg and V1735 Cyg have become fainter at near-infrared wavelengths while V346 Nor has become slightly brighter. V1057 Cyg exhibits a similar flux change also in the mid-infrared. At lambda >= 60 micrometer most of the sources remained constant; only V346 Nor seems to fade. Our data on the long-term evolution of V1057 Cyg agree with the model predictions of Kenyon & Hartmann (1991) and Turner et al. (1997) at near- and mid-infrared wavelengths, but disagree at lambda > 25 micrometer. We discuss if this observational result at far-infrared wavelengths could be understood in the framework of the existing models.Comment: 9 pages, 3 figures, to be published in Astronomy & Astrophysic

    Continuous Damage Fiber Bundle Model for Strongly Disordered Materials

    Full text link
    We present an extension of the continuous damage fiber bundle model to describe the gradual degradation of highly heterogeneous materials under an increasing external load. Breaking of a fiber in the model is preceded by a sequence of partial failure events occurring at random threshold values. In order to capture the subsequent propagation and arrest of cracks, furthermore, the disorder of the number of degradation steps of material constituents, the failure thresholds of single fibers are sorted into ascending order and their total number is a Poissonian distributed random variable over the fibers. Analytical and numerical calculations showed that the failure process of the system is governed by extreme value statistics, which has a substantial effect on the macroscopic constitutive behaviour and on the microscopic bursting activity as well.Comment: 10 pages, 13 figure

    Dense cores in the dark cloud complex LDN1188

    Full text link
    We present a molecular line emission study of the LDN1188 dark cloud complex located in Cepheus. In this work we focused on the densest parts of the cloud and on the close neighbourhood of infrared point sources. We made ammonia mapping with the Effelsberg 100-m radio telescope and identified 3 dense cores. CS(1--0), CS(2--1) and HCO+^{+}(1--0) measurements performed with the Onsala 20\,m telescope revealed the distribution of dense molecular material. The molecular line measurements were supplemented by mapping the dust emission at 1.2\,mm in some selected directions using the IRAM 30\,m telescope. With these data we could work out a likely evolutionary sequence in this dark clould complex.Comment: YouResAstro2012 conference presentation; accepted to Astronomishen Nachrichten (25-July-2013

    Lattice structures of Larkin-Ovchinnikov-Fulde - Ferrell (LOFF) state

    Full text link
    Starting from the Ginzburg-Landau free energy describing the normal state to Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state transition, we evaluate the free energy of seven most common lattice structures such as stripe, square, triangular,Simple Cubic (SC), Face centered Cubic (FCC),Body centered Cubic (BCC) and Quasi-crystal (QC). We find that the stripe phase which is the original LO state, is the most stable phase. This result maybe relevant to the detection of LOFF state in some heavy fermion compounds and the pairing lattice structure of fermions with unequal populations in the BCS side of Feshbach resonance in ultra-cold atoms.Comment: 8 pages, 10 figure
    corecore