6,484 research outputs found

    Electron Spectral Functions of Reconstructed Quantum Hall Edges

    Full text link
    During the reconstruction of the edge of a quantum Hall liquid, Coulomb interaction energy is lowered through the change in the structure of the edge. We use theory developed earlier by one of the authors [K. Yang, Phys. Rev. Lett. 91, 036802 (2003)] to calculate the electron spectral functions of a reconstructed edge, and study the consequences of the edge reconstruction for the momentum-resolved tunneling into the edge. It is found that additional excitation modes that appear after the reconstruction produce distinct features in the energy and momentum dependence of the spectral function, which can be used to detect the presence of edge reconstruction.Comment: RevTeX, 5 pages, 4 figures; replaced with the published version; journal reference adde

    A simple beam model for the shear failure of interfaces

    Get PDF
    We propose a novel model for the shear failure of a glued interface between two solid blocks. We model the interface as an array of elastic beams which experience stretching and bending under shear load and break if the two deformation modes exceed randomly distributed breaking thresholds. The two breaking modes can be independent or combined in the form of a von Mises type breaking criterion. Assuming global load sharing following the beam breaking, we obtain analytically the macroscopic constitutive behavior of the system and describe the microscopic process of the progressive failure of the interface. We work out an efficient simulation technique which allows for the study of large systems. The limiting case of very localized interaction of surface elements is explored by computer simulations.Comment: 11 pages, 13 figure

    Supervised Learning Under Distributed Features

    Full text link
    This work studies the problem of learning under both large datasets and large-dimensional feature space scenarios. The feature information is assumed to be spread across agents in a network, where each agent observes some of the features. Through local cooperation, the agents are supposed to interact with each other to solve an inference problem and converge towards the global minimizer of an empirical risk. We study this problem exclusively in the primal domain, and propose new and effective distributed solutions with guaranteed convergence to the minimizer with linear rate under strong convexity. This is achieved by combining a dynamic diffusion construction, a pipeline strategy, and variance-reduced techniques. Simulation results illustrate the conclusions

    Edge Excitations and Non-Abelian Statistics in the Moore-Read State: A Numerical Study in the Presence of Coulomb Interaction and Edge Confinement

    Full text link
    We study the ground state and low-energy excitations of fractional quantum Hall systems on a disk at filling fraction ν=5/2\nu = 5/2, with Coulomb interaction and background confining potential. We find the Moore-Read ground state is stable within a finite but narrow window in parameter space. The corresponding low-energy excitations contain a fermionic branch and a bosonic branch, with widely different velocities. A short-range repulsive potential can stabilize a charge +e/4+e/4 quasihole at the center, leading to a different edge excitation spectrum due to the change of boundary conditions for Majorana fermions, clearly indicating the non-Abelian nature of the quasihole.Comment: 4 pages, 3 figures. New version shortened for PRL. Corrected typo
    • …
    corecore