68 research outputs found

    Characterization of innovative rotary swaged Cu-Al clad composite wire conductors

    Get PDF
    Cu/Al composites are perspective for applications in a wide range of industrial and commercial branches, from transportation to elecatrotechnics. This study focuses on Cu/Al clad composite wires with 5 mm diameter featuring unique sequencing produced via the technology of rotary swaging at the processing temperatures of 20 degrees C and 250 degrees C. During the swaging process, we continuously acquired samples for investigations and used our own KOMAFU S600 system for dynamic detection of swaging forces. The composite wires subjected to electrical resistivity measurement were further analysed via electron microscopy, neutron diffraction, and mechanical testing. The results showed that both the total imposed strain (swaging degree) and swaging temperature influenced the investigated parameters non-negligibly. The samples subjected to high reduction ratios (swaging degree > 3) at the temperature of 250 degrees C exhibited formation of intermetallics at the interfaces, which deteriorated the electric conductivity. However, the conductivity was also affected by structural phenomena, such as work hardening, texture development, dislocations density, and recrystallization. All the final 5 mm samples exhibited sufficient bonding of both the components and recrystallized ultra-fine grained structures providing them with the ultimate tensile strength of >200 MPa.Web of Science16083582

    Texture evolution in biocompatible Mg-Y-Re alloy after friction stir processing

    Get PDF
    The presented study deals with the investigation of biocompatible WE 43 Mg-based alloy processed via the combination of rotary swaging (RS) and friction stir processing (FSP) at three different rotational speeds of 400 RPM, 800 RPM, and 1200 RPM. The structure observations primarily focused on texture development and characterizations of grain sizes and grain boundaries. The results showed that swaging plus processing at 400 RPM and 1200 RPM lead to substantial recrystallization and grain refinement. The fractions of low angle grain boundaries within the 400 RPM and 1200 RPM samples were approximately 11%, while for the 800 RPM sample exhibiting secondary recrystallization it was about 22%. The grains were also the finest in the 1200 RPM sample (average grain diameter of 1.8 mu m). The processed structures exhibited a slight tendency to form the {10-10} preferential fiber texture (especially the 800 RPM sample). Tensile testing showed the FSP to have positive influence on the ultimate tensile stress, as well as ductility of all the samples; the mechanical properties improved with increasing FSP rate.Web of Science911art. no. 118

    Affecting structure characteristics of rotary swaged tungsten heavy alloy via variable deformation temperature

    Get PDF
    This study focuses on numerical prediction and experimental investigation of deformation behaviour of a tungsten heavy alloy prepared via powder metallurgy and subsequent cold (20 degrees C) and warm (900 degrees C) rotary swaging. Special emphasis was placed on the prediction of the effects of the applied induction heating. As shown by the results, the predicted material behaviour was in good correlation with the real experiment. The differences in the plastic flow during cold and warm swaging imparted differences in structural development and the occurrence of residual stress. Both the swaged pieces exhibited the presence of residual stress in the peripheries of W agglomerates. However, the NiCO matrix of the warm-swaged piece also exhibited the presence of residual stress, and it also featured regions with increased W content. Testing of mechanical properties revealed the ultimate tensile strength of the swaged pieces to be approximately twice as high as of the sintered piece (860 MPa compared to 1650 MPa and 1828 MPa after warm and cold swaging, respectively).Web of Science1224art. no. 420

    Correlating microstrain and activated slip systems with mechanical properties within rotary swaged WNiCo pseudoalloy

    Get PDF
    Due to their superb mechanical properties and high specific mass, tungsten heavy alloys are used in demanding applications, such as kinetic penetrators, gyroscope rotors, or radiation shielding. However, their structure, consisting of hard tungsten particles embedded in a soft matrix, makes the deformation processing a challenging task. This study focused on the characterization of deformation behavior during thermomechanical processing of a WNiCo tungsten heavy alloy (THA) via the method of rotary swaging at various temperatures. Emphasis is given to microstrain development and determination of the activated slip systems and dislocation density via neutron diffraction. The analyses showed that the grains of the NiCo2W matrix refined significantly after the deformation treatments. The microstrain was higher in the cold swaged sample (44.2 x 10(-4)). Both the samples swaged at 20 degrees C and 900 degrees C exhibited the activation of edge dislocations with {110} or {111} slip systems, and/or screw dislocations with slip system in the NiCo2W matrix. Dislocation densities were determined and the results were correlated with the final mechanical properties of the swaged bars.Web of Science131art. no. 20

    Effects of sintering conditions on structures and properties of sintered tungsten heavy alloy

    Get PDF
    Probably the most advantageous fabrication technology of tungsten heavy alloys enabling the achievement of required performance combines methods of powder metallurgy and processing by intensive plastic deformation. Since the selected processing conditions applied for each individual processing step affect the final structures and properties of the alloys, their optimization is of the utmost importance. This study deals with thorough investigations of the effects of sintering temperature, sintering time, and subsequent quenching in water on the structures and mechanical properties of a 93W6Ni1Co tungsten heavy alloy. The results showed that sintering at temperatures of or above 1525 degrees C leads to formation of structures featuring W agglomerates surrounded by the NiCo matrix. The sintering time has non-negligible effects on the microhardness of the sintered samples as it affects the diffusion and structure softening phenomena. Implementation of quenching to the processing technology results in excellent plasticity of the green sintered and quenched pieces of almost 20%, while maintaining the strength of more than 1000 MPa.Web of Science1310art. no. 233

    Microstructure and mechanical properties of sintered and heat-treated HfNbTaTiZr high entropy alloy

    Get PDF
    High entropy alloys (HEAs) have attracted researchers' interest in recent years. The aim of this work was to prepare the HfNbTaTiZr high entropy alloy via the powder metallurgy process and characterize its properties. The powder metallurgy process is a prospective solution for the synthesis of various alloys and has several advantages over arc melting (e.g., no dendritic structure, near net-shape, etc.). Cold isostatic pressing of blended elemental powders and subsequent sintering at 1400 degrees C for various time periods up to 64 h was used. Certain residual porosity, as well as bcc2 (Nb- and Ta-rich) and hcp (Zr- and Hf-rich) phases, remained in the bcc microstructure after sintering. The bcc2 phase was completely eliminated during annealing (1200 degrees C/1h) and subsequent water quenching. The hardness values of the sintered specimens ranged from 300 to 400 HV10. The grain coarsening during sintering was significantly limited and the maximum average grain diameter after 64 h of sintering was approximately 60 mu m. The compression strength at 800 degrees C was 370 MPa and decreased to 47 MPa at 1200 degrees C. Porosity can be removed during the hot deformation process, leading to an increase in hardness to similar to 450 HV10.Web of Science912art. no. 132

    Experimental and numerical analysis of a knee endoprosthesis numerical model

    Get PDF
    The aim of this study is to create and verify a numerical model for a Medin Modular orthopedic knee-joint implant by investigating contact pressure, its distribution and contact surfaces. An experiment using Fuji Prescale pressure sensitive films and a finite element analysis (FEA) using Abaqus software were carried out. The experimental data were evaluated using a special designed program and were compared with the results of the analysis. The designed evaluation program had been constructed on the basis of results obtained from a supplementary calibration experiment. The applicability of the numerical model for the real endoprosthesis behavior prediction was proven on the basis of their good correlation.Web of Science55335234

    Analysis of deformation behaviour and residual stress in rotary swaged Cu/Al clad composite wires

    Get PDF
    Both copper and aluminum are widely applicable throughout a variety of industrial and commercial branches, however, joining them in a composite provides the possibility of combining all their advantageous properties in one material. This study investigates uniquely sequenced copper-aluminum clad composite wires, fabricated via rotary swaging technology. The composites were processed at 20 degrees C and 250 degrees C to a diameter of 5 mm. Structural observations and the determination of residual stress within both elements of the swaged wires were performed via electron microscopy; the experimental results were correlated with numerical predictions. As shown in the results, both the applied swaging force and temperature affected the plastic flow, which had a direct influence on residual stress and texture development; the Al-sheath elements exhibited ideal rolling textures, whereas the Cu-wires elements featured ideal shear texture orientation. The grains within both the Al-sheath elements of the 5 mm composite wire were refined down to sub-micron size. Structural restoration also had a positive influence on residual stress.Web of Science1221art. no. 346

    Finite element analysis of Ti-based knee-joint implant

    Get PDF
    The focus of this paper was on finite element analysis of a PROSPON oncological knee endoprosthesis. The 3D CAD knee joint model, the designed FE PROSPON prosthesis model into which was integrated, was created on the basis of Visible Human Project CT scans. Analyses of stress state and contact pressures were performed in the kneebending position within 15,4° - 69,4° hip joint flection range. The results showed that the maximum achieved stress did not exceed the yield strength (90 MPa) of the material. The results of the stress state were in accordance with the distribution of contact pressure.Web of Science54469469

    Affecting microstructure and properties of additively manufactured AISI 316L steel by rotary swaging

    Get PDF
    The presented work focused on the development of the microstructural and mechanical properties of a AISI 316L stainless steel workpiece prepared through additive manufacturing and subsequently processed by hot rotary swaging. In order to characterize the effects of swaging on the structural development, samples were taken for electron microscopy scanning and microhardness measurements were taken after each swaging reduction. The as-built and final swaged pieces were also subjected to tensile testing at room temperature and at 900 degrees C. The structural analyses showed that the hot swaging introduced a substructural formation; low angle grain boundaries prevailed over high angle ones after each pass. The swaging also imparted an almost complete elimination of the porosity and significant grain size; the average grain area decreased from the original value of 365.5 mu m(2) to 4.4 mu m(2) after the final swaging pass. The changes in the texture between the passes were negligible, however, the grain refinement went hand in hand with the microhardness increase (up to almost 300 HV1). The results of the tensile testing confirmed that the mechanical properties of the swaged pieces which improved dramatically and remained favorable up to high temperatures.Web of Science1518art. no. 629
    corecore