23 research outputs found

    Engineering of human cardiac muscle electromechanically matured to an adult-like phenotype

    Get PDF
    Author ManuscriptThe application of tissue-engineering approaches to human induced pluripotent stem (hiPS) cells enables the development of physiologically relevant human tissue models for in vitro studies of development, regeneration, and disease. However, the immature phenotype of hiPS-derived cardiomyocytes (hiPS-CMs) limits their utility. We have developed a protocol to generate engineered cardiac tissues from hiPS cells and electromechanically mature them toward an adult-like phenotype. This protocol also provides optimized methods for analyzing these tissues' functionality, ultrastructure, and cellular properties. The approach relies on biological adaptation of cultured tissues subjected to biomimetic cues, applied at an increasing intensity, to drive accelerated maturation. hiPS cells are differentiated into cardiomyocytes and used immediately after the first contractions are observed, when they still have developmental plasticity. This starting cell population is combined with human dermal fibroblasts, encapsulated in a fibrin hydrogel and allowed to compact under passive tension in a custom-designed bioreactor. After 7 d of tissue formation, the engineered tissues are matured for an additional 21 d by increasingly intense electromechanical stimulation. Tissue properties can be evaluated by measuring contractile function, responsiveness to electrical stimuli, ultrastructure properties (sarcomere length, mitochondrial density, networks of transverse tubules), force-frequency and force-length relationships, calcium handling, and responses to β-adrenergic agonists. Cell properties can be evaluated by monitoring gene/protein expression, oxidative metabolism, and electrophysiology. The protocol takes 4 weeks and requires experience in advanced cell culture and machining methods for bioreactor fabrication. We anticipate that this protocol will improve modeling of cardiac diseases and testing of drugs.NIBIB and NCATS grant EB17103 (G.V.-N.); NIBIB, NCATS, NIAMS, NIDCR, and NIEHS grant EB025765 (G.V.-N.); NHLBI grants HL076485 (G.V.-N.) and HL138486 (M.Y.); NSF grant 16478 (G.V.-N.); the University of Minho MD/PhD program (D.T.); a Japan Society for the Promotion of Science fellowship (K.M.); and the Columbia University Stem Cell Initiative (L.S., M.Y.

    Advanced maturation of human cardiac tissue grown from pluripotent stem cells

    Get PDF
    Cardiac tissues generated from human induced pluripotent stem cells (iPSCs) can serve as platforms for patient-specific studies of physiology and disease1-6. However, the predictive power of these models is presently limited by the immature state of the cells1, 2, 5, 6. Here we show that this fundamental limitation can be overcome if cardiac tissues are formed from early-stage iPSC-derived cardiomyocytes soon after the initiation of spontaneous contractions and are subjected to physical conditioning with increasing intensity over time. After only four weeks of culture, for all iPSC lines studied, such tissues displayed adult-like gene expression profiles, remarkably organized ultrastructure, physiological sarcomere length (2.2 µm) and density of mitochondria (30%), the presence of transverse tubules, oxidative metabolism, a positive force-frequency relationship and functional calcium handling. Electromechanical properties developed more slowly and did not achieve the stage of maturity seen in adult human myocardium. Tissue maturity was necessary for achieving physiological responses to isoproterenol and recapitulating pathological hypertrophy, supporting the utility of this tissue model for studies of cardiac development and disease.The authors acknowledge funding support from the National Institutes of Health of the USA (NIBIB and NCATS grant EB17103 (G.V.-N.); NIBIB, NCATS, NIAMS, NIDCR and NIEHS grant EB025765 (G.V.-N.); NHLBI grants HL076485 (G.V.-N.) and HL138486 (M.Y.); Columbia University MD/PhD program (S.P.M., T.C.); University of Minho MD/PhD program (D.T.); Japan Society for the Promotion of Science fellowship (K.M.); and Columbia University Stem Cell Initiative (D.S., L.S., M.Y.). We thank S. Duncan and B. Conklin for providing human iPSCs, M.B. Bouchard for assistance with image and video analysis, and L. Cohen-Gould for transmission electron microscopy services.info:eu-repo/semantics/publishedVersio

    Restoration of mutant hERG stability by inhibition of HDAC6

    Get PDF
    The human ether-a-go-go-related gene (hERG) encodes the α subunit of a rapidly activating delayed-rectifier potassium (IKr) channel. Mutations of the hERG cause long QT syndrome type 2 (LQT2). Acetylation of lysine residues occurs in a subset of non-histone proteins and this modification is controlled by both histone acetyltransferases and deacetylases (HDACs). The aim of this study was to clarify effects of HDAC(s) on wild-type (WT) and mutant hERG proteins. WThERG and two trafficking-defective mutants (G601S and R752W) were transiently expressed in HEK293 cells, which were treated with a pan-HDAC inhibitor Trichostatin A (TSA) or an isoform-selective HDAC6 inhibitor Tubastatin A (TBA). Both TSA and TBA increased protein levels of WThERG and induced expression of mature forms of the two mutants. Immunoprecipitation showed an interaction between HDAC6 and immature forms of hERG. Coexpression of HDAC6 decreased acetylation and, reciprocally, increased ubiquitination of hERG, resulting in its decreased expression. siRNA against HDAC6, as well as TBA, exerted opposite effects. Immunochemistry revealed that HDAC6 knockdown increased expression of the WThERG and two mutants both in the endoplasmic reticulum and on the cell surface. Electrophysiology showed that HDAC6 knockdown or TBA treatment increased the hERG channel current corresponding to the rapidly activating delayed-rectifier potassium current (IKr) in HEK293 cells stably expressing the WT or mutants. Three lysine residues (K116, K495 and K757) of hERG were predicted to be acetylated. Substitution of these lysine residues with arginine eliminated HDAC6 effects. In HL-1 mouse cardiomyocytes, TBA enhanced endogenous ERG expression, increased IKr, and shortened action potential duration. These results indicate that hERG is a substrate of HDAC6. HDAC6 inhibition induced acetylation of hERG which counteracted ubiquitination leading its stabilization. HDAC6 inhibition may be a novel therapeutic option for LQT2

    Inhibition of CDK5 Alleviates the Cardiac Phenotypes in Timothy Syndrome

    No full text
    L-type calcium channel CaV1.2 plays an essential role in cardiac function. The gain-of-function mutations in CaV1.2 have been reported to be associated with Timothy syndrome, a disease characterized by QT prolongation and syndactyly. Previously we demonstrated that roscovitine, a cyclin-dependent kinase (CDK) inhibitor, could rescue the phenotypes in induced pluripotent stem cell-derived cardiomyocytes from Timothy syndrome patients. However, exactly how roscovitine rescued the phenotypes remained unclear. Here we report a mechanism potentially underlying the therapeutic effects of roscovitine on Timothy syndrome cardiomyocytes. Our results using roscovitine analogs and CDK inhibitors and constructs demonstrated that roscovitine exhibits its therapeutic effects in part by inhibiting CDK5. The outcomes of this study allowed us to identify a molecular mechanism whereby CaV1.2 channels are regulated by CDK5. This study provides insights into the regulation of cardiac calcium channels and the development of future therapeutics for Timothy syndrome patients
    corecore