28 research outputs found

    Disturbance of cerebellar synaptic maturation in mutant mice lacking BSRPs, a novel brain-specific receptor-like protein family

    Get PDF
    AbstractBy DNA cloning, we have identified the BSRP (brain-specific receptor-like proteins) family of three members in mammalian genomes. BSRPs were predominantly expressed in the soma and dendrites of neurons and localized in the endoplasmic reticulum (ER). Expression levels of BSRPs seemed to fluctuate greatly during postnatal cerebellar maturation. Triple-knockout mice lacking BSRP members exhibited motor discoordination, and Purkinje cells (PCs) were often innervated by multiple climbing fibers with different neuronal origins in the mutant cerebellum. Moreover, the phosphorylation levels of protein kinase Cα (PKCα) were significantly downregulated in the mutant cerebellum. Because cerebellar maturation and plasticity require metabotropic glutamate receptor signaling and resulting PKC activation, BSRPs are likely involved in ER functions supporting PKCα activation in PCs

    O-GlcNAc on PKCζ Inhibits the FGF4-PKCζ-MEK-ERK1/2 Pathway via Inhibition of PKCζ Phosphorylation in Mouse Embryonic Stem Cells

    No full text
    Summary: Mouse embryonic stem cells (ESCs) differentiate into multiple cell types during organismal development. Fibroblast growth factor 4 (FGF4) signaling induces differentiation from ESCs via the phosphorylation of downstream molecules such as mitogen-activated protein kinase/extracellular signal-related kinase (MEK) and extracellular signal-related kinase 1/2 (ERK1/2). The FGF4-MEK-ERK1/2 pathway is inhibited to maintain ESCs in the undifferentiated state. However, the inhibitory mechanism of the FGF4-MEK-ERK1/2 pathway in ESCs is uncharacterized. O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is a post-translational modification characterized by the attachment of a single N-acetylglucosamine (GlcNAc) to the serine and threonine residues of nuclear or cytoplasmic proteins. Here, we showed that the O-GlcNAc on the phosphorylation site of PKCζ inhibits PKCζ phosphorylation (activation) and, consequently, the FGF4-PKCζ-MEK-ERK1/2 pathway in ESCs. Our results demonstrate the mechanism for the maintenance of the undifferentiated state of ESCs via the inhibition of the FGF4-PKCζ-MEK-ERK1/2 pathway by O-GlcNAcylation on PKCζ

    Disaccharide-tag for highly sensitive identification of O-GlcNAc-modified proteins in mammalian cells.

    No full text
    O-GlcNAcylation is the only sugar modification for proteins present in the cytoplasm and nucleus and is thought to be involved in the regulation of protein function and localization. Currently, several methods are known for detecting O-GlcNAcylated proteins using monoclonal antibodies or wheat germ agglutinin, but these methods have some limitations in their sensitivity and quantitative comparison. We developed a new disaccharide-tag method to overcome these problems. This is a method in which a soluble GalNAc transferase is expressed intracellularly, extended to a disaccharide of GalNAc-GlcNAc, and detected using a Wisteria japonica agglutinin specific to this disaccharide. We verified the method using human c-Rel protein and also highly sensitively compared the difference in O-GlcNAc modification of intracellular proteins associated with differentiation from embryonic stem cell (ESC) to epiblast-like cells (EpiLC). As one example of such a modification, a novel O-GlcNAc modification was found in the transcription factor Sox2 at residue Ser263, and the modification site could be identified by nano liquid chromatography-mass spectrometry

    Caenorhabditis elegans PTR/PTCHD PTR-18 promotes the clearance of extracellular hedgehog-related protein via endocytosis.

    No full text
    Spatiotemporal restriction of signaling plays a critical role in animal development and tissue homeostasis. All stem and progenitor cells in newly hatched C. elegans larvae are quiescent and capable of suspending their development until sufficient food is supplied. Here, we show that ptr-18, which encodes the evolutionarily conserved patched-related (PTR)/patched domain-containing (PTCHD) protein, temporally restricts the availability of extracellular hedgehog-related protein to establish the capacity of progenitor cells to maintain quiescence. We found that neural progenitor cells exit from quiescence in ptr-18 mutant larvae even when hatched under starved conditions. This unwanted reactivation depended on the activity of a specific set of hedgehog-related grl genes including grl-7. Unexpectedly, neither PTR-18 nor GRL-7 were expressed in newly hatched wild-type larvae. Instead, at the late embryonic stage, both PTR-18 and GRL-7 proteins were first localized around the apical membrane of hypodermal and neural progenitor cells and subsequently targeted for lysosomal degradation before hatching. Loss of ptr-18 caused a significant delay in GRL-7 clearance, causing this protein to be retained in the extracellular space in newly hatched ptr-18 mutant larvae. Furthermore, the putative transporter activity of PTR-18 was shown to be required for the appropriate function of the protein. These findings not only uncover a previously undescribed role of PTR/PTCHD in the clearance of extracellular hedgehog-related proteins via endocytosis-mediated degradation but also illustrate that failure to temporally restrict intercellular signaling during embryogenesis can subsequently compromise post-embryonic progenitor cell function

    Site-specific O-GlcNAcylation of Psme3 maintains mouse stem cell pluripotency by impairing P-body homeostasis

    No full text
    Mouse embryonic stem cell (ESC) pluripotency is tightly regulated by a complex network composed of extrinsic and intrinsic factors that allow proper organismal development. O-linked β-N-acetylglucosamine (O-GlcNAc) is the sole glycosylation mark found on cytoplasmic and nuclear proteins and plays a pivotal role in regulating fundamental cellular processes; however, its function in ESC pluripotency is still largely unexplored. Here, we identify O-GlcNAcylation of proteasome activator subunit 3 (Psme3) protein as a node of the ESC pluripotency network. Mechanistically, O-GlcNAc modification of serine 111 (S111) of Psme3 promotes degradation of Ddx6, which is essential for processing body (P-body) assembly, resulting in the maintenance of ESC pluripotent state. Conversely, loss of Psme3 S111 O-GlcNAcylation stabilizes Ddx6 and increases P-body levels, culminating in spontaneous exit of ESC from the pluripotent state. Our findings establish O-GlcNAcylation at S111 of Psme3 as a switch that regulates ESC pluripotency via control of P-body homeostasis
    corecore