12 research outputs found

    Full-Range Approximation for the Theis Well Function Using Ramanujan's Series and Bounds for the Exponential Integral

    Full text link
    The solution of the governing equation representing the drawdown in a horizontal confined aquifer, where groundwater flow is unsteady, is provided in terms of the exponential integral, which is famously known as the Well function. For the computation of this function in practical applications, it is important to develop not only accurate but also a simple approximation that requires evaluation of the fewest possible terms. To that end, introducing Ramanujan's series expression, this work proposes a full-range approximation to the exponential integral using Ramanujan's series for the small argument (u \leq 1) and an approximation based on the bound of the integral for the other range (u \in (1,100]). The evaluation of the proposed approximation results in the most accurate formulae compared to the existing studies, which possess the maximum percentage error of 0.05\%. Further, the proposed formula is much simpler to apply as it contains just the product of exponential and logarithm functions. To further check the efficiency of the proposed approximation, we consider a practical example for evaluating the discrete pumping kernel, which shows the superiority of this approximation over the others. Finally, the authors hope that the proposed efficient approximation can be useful for groundwater and hydrogeological applications.Comment: 10 page

    Entropy-Based Modeling of Velocity Lag in Sediment-Laden Open Channel Turbulent Flow

    Get PDF
    In the last few decades, a wide variety of instruments with laser-based techniques have been developed that enable experimentally measuring particle velocity and fluid velocity separately in particle-laden flow. Experiments have revealed that stream-wise particle velocity is different from fluid velocity, and this velocity difference is commonly known as “velocity lag” in the literature. A number of experimental, as well as theoretical investigations have been carried out to formulate deterministic mathematical models of velocity lag, based on several turbulent features. However, a probabilistic study of velocity lag does not seem to have been reported, to the best of our knowledge. The present study therefore focuses on the modeling of velocity lag in open channel turbulent flow laden with sediment using the entropy theory along with a hypothesis on the cumulative distribution function. This function contains a parameter η, which is shown to be a function of specific gravity, particle diameter and shear velocity. The velocity lag model is tested using a wide range of twenty-two experimental runs collected from the literature and is also compared with other models of velocity lag. Then, an error analysis is performed to further evaluate the prediction accuracy of the proposed model, especially in comparison to other models. The model is also able to explain the physical characteristics of velocity lag caused by the interaction between the particles and the fluid

    Entropy-Based Modeling of Velocity Lag in Sediment-Laden Open Channel Turbulent Flow

    No full text
    In the last few decades, a wide variety of instruments with laser-based techniques have been developed that enable experimentally measuring particle velocity and fluid velocity separately in particle-laden flow. Experiments have revealed that stream-wise particle velocity is different from fluid velocity, and this velocity difference is commonly known as “velocity lag” in the literature. A number of experimental, as well as theoretical investigations have been carried out to formulate deterministic mathematical models of velocity lag, based on several turbulent features. However, a probabilistic study of velocity lag does not seem to have been reported, to the best of our knowledge. The present study therefore focuses on the modeling of velocity lag in open channel turbulent flow laden with sediment using the entropy theory along with a hypothesis on the cumulative distribution function. This function contains a parameter η, which is shown to be a function of specific gravity, particle diameter and shear velocity. The velocity lag model is tested using a wide range of twenty-two experimental runs collected from the literature and is also compared with other models of velocity lag. Then, an error analysis is performed to further evaluate the prediction accuracy of the proposed model, especially in comparison to other models. The model is also able to explain the physical characteristics of velocity lag caused by the interaction between the particles and the fluid

    Analytical Approximations of Well Function by Solving the Governing Differential Equation Representing Unsteady Groundwater Flow in a Confined Aquifer

    No full text
    A solution of the governing equation representing the drawdown in a horizontal confined aquifer, where groundwater flow is unsteady, was first provided by Theis and is famously known as the Theis solution. This solution was given in terms of an exponential integral, also called the well function, for which simple and reliable approximations are preferred due to their practical applications. To that end, several approximations are available in the literature, of which some are based on series approximations for the integral, and others are numerical approximations. This study employs three kinds of homotopy-based methods, namely the homotopy analysis method (HAM), homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), for analytically solving the governing partial differential equation (PDE). For convenience, the PDE is first converted to a boundary value problem (BVP) using a similarity transformation. Comparing the series approximations obtained using these methods with the Theis solution, it is found that the 10th-order HAM, and just three terms of OHAM-based solutions, provide accurate approximations. On the other hand, the HPM-based solution is found to be accurate only within a small domain. Further, the proposed approximations are compared with several series and numerical approximations available in the literature using the percentage error. The proposed methodology provides accurate approximations of the well function by directly solving the governing differential equation in a general framework and thus can be adapted to other practical situations arising in groundwater flow

    Discussion of “Estimation of one-dimensional velocity distribution by measuring velocity at two points” by Yeganeh and Heidari (2020)

    No full text
    The concept of information entropy together with the principle of maximum entropy to open channel flow is essentially based on some physical consideration of the problem under consideration. This paper is a discussion on Yeganeh and Heidari (2020)’s paper, who proposed a new approach for measuring vertical distribution of streamwise velocity in open channels. The discussers argue that their approach is conceptually incorrect and thus leads to a physically unrealistic situation. In addition, the discussers found some wrong mathematical expressions (which are assumed to be typos) written in the paper, and also point out that the authors did not cite some of the original papers on the topic
    corecore