13 research outputs found

    Hydrogen storage and stability properties of Pd–Pt solid-solution nanoparticles revealed via atomic and electronic structure

    Get PDF
    Bimetallic Pd1−xPt x solid-solution nanoparticles (NPs) display charging/discharging of hydrogen gas, which has relevance for fuel cell technologies; however, the constituent elements are immiscible in the bulk phase. We examined these material systems using high-energy synchrotron X-ray diffraction, X-ray absorption fine structure and hard X-ray photoelectron spectroscopy techniques. Recent studies have demonstrated the hydrogen storage properties and catalytic activities of Pd-Pt alloys; however, comprehensive details of their structural and electronic functionality at the atomic scale have yet to be reported. Three-dimensional atomic-scale structure results obtained from the pair distribution function (PDF) and reverse Monte Carlo (RMC) methods suggest the formation of a highly disordered structure with a high cavity-volume-fraction for low-Pt content NPs. The NP conduction band features, as extracted from X-ray absorption near-edge spectra at the Pd and Pt L III -edge, suggest that the Pd conduction band is filled by Pt valence electrons. This behaviour is consistent with observations of the hydrogen storage capacity of these NPs. The broadening of the valence band width and the down-shift of the d-band centre away from the Fermi level upon Pt substitution also provided evidence for enhanced stability of the hydride (ΔH) features of the Pd1−xPt x solid-solution NPs with a Pt content of 8-21 atomic percent

    Size dependence of structural parameters in fcc and hcp Ru nanoparticles, revealed by Rietveld refinement analysis of high-energy X-ray diffraction data.

    Get PDF
    Ruナノ粒子の構造と触媒活性との関連を見いだす : 局所構造, 平均構造の数値化で実現 機械学習用データを集積し新材料の創製に貢献. 京都大学プレスリリース. 2016-11-01.To reveal the origin of the CO oxidation activity of Ruthenium nanoparticles (Ru NPs), we structurally characterized Ru NPs through Rietveld refinement analysis of high-energy X-ray diffraction data. For hexagonal close-packed (hcp) Ru NPs, the CO oxidation activity decreased with decreasing domain surface area. However, for face-centered cubic (fcc) Ru NPs, the CO oxidation activity became stronger with decreasing domain surface area. In comparing fcc Ru NPs with hcp Ru NPs, we found that the hcp Ru NPs of approximately 2 nm, which had a smaller domain surface area and smaller atomic displacement, showed a higher catalytic activity than that of fcc Ru NPs of the same size. In contrast, fcc Ru NPs larger than 3.5 nm, which had a larger domain surface area, lattice distortion, and larger atomic displacement, exhibited higher catalytic activity than that of hcp Ru NPs of the same size. In addition, the fcc Ru NPs had larger atomic displacements than hcp Ru NPs for diameters ranging from 2.2 to 5.4 nm. Enhancement of the CO oxidation activity in fcc Ru NPs may be caused by an increase in imperfections due to lattice distortions of close-packed planes and static atomic displacements

    Electronic origin of hydrogen storage in MOF-covered palladium nanocubes investigated by synchrotron X-rays

    Get PDF
    Pd-MOFハイブリッド材料の界面電子状態と水素貯蔵特性の関係の定量的な解析に成功 --電子約0.4個分の電荷移動が約2倍の特性向上に寄与 新規ハイブリッド材料開発の促進が期待--. 京都大学プレスリリース. 2018-10-11.Hybrid materials composed of metal nanoparticles and metal-organic frameworks have attracted attention for various applications because of the synergistic functionality between their constituent materials. Interfacial interaction is expected however the mechanism remains ambiguous. Here we report the valence bands of palladium nanocubes covered by copper(II) 1, 3, 5-benzenetricarboxylate (HKUST-1), denoted as Pd@HKUST-1, and the charge transfer from the palladium nanocubes to HKUST-1 at the Pd/HKUST-1 interface is investigated quantitatively. Interfacial density of states are different from those of internal constituents and imply that the Cu-O group in HKUST-1 acts as a charge accepter. The role of Cu-O group in charge transfer behaviour is also observed experimentally. Finally, we reveal the charge transfer mechanism from the Pd 4d bands to the Cu 3d (4sp) - O 2p hybridization bands of HKUST-1 at the Pd/HKUST-1 interface, which explains the enhanced hydrogen storage capacity in Pd@HKUST-1

    Disappearance of the Superionic Phase Transition in Sub‑5 nm Silver Iodide Nanoparticles

    No full text
    Bulk silver iodide (AgI) is known to show a phase transition from the poorly conducting β/γ-phases into the superionic conducting α-phase at 147 °C. Its transition temperature decreases with decreasing the size of AgI, and the α-phase exists stably at 37 °C in AgI nanoparticles with a diameter of 6.3 nm. In this Letter, we investigated the atomic configuration, the phase transition behavior, and the ionic conductivity of AgI nanoparticles with a diameter of 3.0 nm. The combination of pair distribution function (PDF) analysis and reverse Monte Carlo (RMC) modeling based on high-energy X-ray diffraction (XRD) revealed for the first time that they formed the β/γ-phases with atomic disorder. The results of extended X-ray absorption fine structure (EXAFS) analysis, differential scanning calorimetry (DSC), and AC impedance spectroscopy demonstrated that they did not exhibit the superionic phase transition and their ionic conductivity was lower than that of crystalline AgI. The disappearance of the superionic phase transition and low ionic conductivity in the very small AgI nanoparticles originates from their small size and disordered structure

    Continuous-Flow Chemical Synthesis for Sub-2 nm Ultra-Multielement Alloy Nanoparticles Consisting of Group IV to XV Elements

    No full text
    Multielement alloy nanoparticles have attracted much attention due to their attractive catalytic properties derived from the multiple interactions of adjacent multielement atoms. However, mixing multiple elements in ultrasmall nanoparticles from a wide range of elements on the periodic table is still challenging because the elements have different properties and miscibility. Herein, we developed a benchtop 4-way flow reactor for chemical synthesis of ultra-multielement alloy (UMEA) nanoparticles composed of d-block and p-block elements. BiCoCuFeGaInIrNiPdPtRhRuSbSnTi 15-element alloy nanoparticles composed of group IV to XV elements were synthesized by sequential injection of metal precursors using the reactor. This methodology realized the formation of UMEA nanoparticles at low temperature (66 °C), resulting in a 1.9 nm ultrasmall average particle size. The UMEA nanoparticles have high durability and activity for electrochemical alcohol oxidation reactions and high tolerance to CO poisoning. These results suggest that the multiple interactions of UMEA efficiently promote the multistep alcohol oxidation reaction

    Continuous-Flow Chemical Synthesis for Sub‑2 nm Ultra-Multielement Alloy Nanoparticles Consisting of Group IV to XV Elements

    No full text
    Multielement alloy nanoparticles have attracted much attention due to their attractive catalytic properties derived from the multiple interactions of adjacent multielement atoms. However, mixing multiple elements in ultrasmall nanoparticles from a wide range of elements on the periodic table is still challenging because the elements have different properties and miscibility. Herein, we developed a benchtop 4-way flow reactor for chemical synthesis of ultra-multielement alloy (UMEA) nanoparticles composed of d-block and p-block elements. BiCoCuFeGaInIrNiPdPtRhRuSbSnTi 15-element alloy nanoparticles composed of group IV to XV elements were synthesized by sequential injection of metal precursors using the reactor. This methodology realized the formation of UMEA nanoparticles at low temperature (66 °C), resulting in a 1.9 nm ultrasmall average particle size. The UMEA nanoparticles have high durability and activity for electrochemical alcohol oxidation reactions and high tolerance to CO poisoning. These results suggest that the multiple interactions of UMEA efficiently promote the multistep alcohol oxidation reaction
    corecore