40,355 research outputs found

    Squeezing of the mechanical motion and beating 3 dB limit using dispersive optomechanical interactions

    Full text link
    We study an optomechanical system consisting of an optical cavity and movable mirror coupled through dispersive linear optomechanical coupling (LOC) and quadratic optomechanical coupling(QOC). We work in the resolved side band limit with a high quality factor mechanical oscillator in a strong coupling regime. We show that the presence of QOC in the conventional optomechanical system (with LOC alone) modifies the mechanical oscillator's frequency and reduces the back-action effects on mechanical oscillator. As a result of this the fluctuations in mechanical oscillator can be suppressed below standard quantum limit thereby squeeze the mechanical motion of resonator. We also show that either of the quadratures can be squeezed depending on the sign of the QOC. With detailed numerical calculations and analytical approximation we show that in such systems, the 3 dB limit can be beaten.Comment: 5 figures, 11 pages accepted in Journal of Modern Optics http://dx.doi.org/10.1080/09500340.2016.126605

    Kinetic Modelling for Tar Evolution and Formation in a Downdraft Gasifier

    Get PDF
    Biomass gasification modeling is a powerful tool used to optimize the design of a gasifier. A detailed kinetic model was built by the current authors [1] to predict the behavior of air blown downdraft gasifier for a wide range of materials within the range of (38≤C≤52) %, (5.2≤H≤7) %, and (21.7≤O≤45) %. The model was verified and showed a good stability for a wide range of working parameters like equivalence ratio and moisture content. In the current research, 4 main tar species are added to the model to represent tar formation using detailed kinetic reactions. The yield of tar species is discussed for different zones of a gasifier based on temperature of each zone. Mass and energy balance are calculated. 18 different kinetic reactions are implemented in the kinetic code to predict the optimum working conditions that leads to the production of higher value producer gas. Results conclude that using ER of 0.3 with moisture content levels lower than 10% will lead to the production of higher yields of syngas with lower amounts of tar

    On Link Availability Probability of Routing Protocols for Urban Scenario in VANETs

    Full text link
    This paper presents the link availability probability. We evaluate and compare the link availability probability for routing protocols; Ad hoc On-demand Distance vector (AODV), Dynamic Source Routing (DSR) and Fisheye State Routing (FSR) for different number of connections and node density. A novel contribution of this work is enhancement in existing parameters of routing protocols; AODV, DSR and FSR as MOD-AODV, MOD-DSR and MOD-FSR. From the results, we observe that MOD-DSR and DSR outperform MOD-AODV, AODV, MODOLSR and OLSR in terms of Packet Delivery Ratio (PDR), Average End-to End Delay (AE2ED), link availability probability at the cost of high value of Normalized Routing Overhead (NRO).Comment: IEEE Conference on Open Systems (ICOS2012)", Kuala Lumpur, Malaysia, 201

    Inflation is the generic feature of phantom field-not the big-rip

    Get PDF
    A class of solutions for phantom field corresponding to a generalized k-essence lagrangian has been presented, employing a simple method which provides the scope to explore many such. All the solutions having dynamical state parameter are found to touch the magic line w = -1, asymptotically. The solutions with constant equation of state can represent phantom, quitessence or an ordinary scalar field cosmologies depending on the choice of a couple of parameters of the theory. For w approximately equal to -1, quintessence and phantom models are indistinguishable through the Hubble parameter. Finally, inflation rather than big-rip has been found to be the generic feature of phantom cosmology.Comment: 8 pages, 3 figure

    Effects of linear and quadratic dispersive couplings on optical squeezing in an optomechanical system

    Get PDF
    A conventional optomechanical system is composed of a mechanical mode and an optical mode interacting through a linear optomechanical coupling (LOC). We study how the presence of quadratic optomechanical coupling (QOC) in the conventional optomechanical system affects the system's stability and optical quadrature squeezing. We work in the resolved side-band limit with a high quality factor mechanical oscillator. In contrast to the conventional optomechanical systems, we find that strong squeezing of the cavity field can be achieved in presence of QOC along with LOC at lower pump powers and at higher bath temperatures. Using detailed numerical calculations we also find that there exists an optimal QOC where one can achieve maximum squeezing.Comment: 6 figure

    Polarized Light from the Transportation of a Matter-Antimatter Beam in a Plasma

    No full text
    A relativistic electron-positron beam propagating through a magnetized electron-ion plasma is shown to generate both circularly and linearly polarized synchrotron radiation. The degrees of circular and linear polarizations depend both on the density ratio of pair beam to background plasma and initial magnetization, and a maximum degree of circular polarization Pcirc18%\langle P_\textrm{circ}\rangle \approx 18\% is found to occur for a tenuous pair beam. We demonstrate that the generation of circularly polarized radiation is intrinsically linked to asymmetric energy dissipation of the pair beam during the filamentation instability dynamics in the electron-ion plasma. These results can help in understanding the recent observations of circularly polarized radiation from gamma-ray-bursts
    corecore