12,629 research outputs found

    Wigner distributions for an electron

    Full text link
    We study the Wigner distributions for a physical electron, which reveal the multidimensional images of the electron. The physical electron is considered as a composite system of a bare electron and photon. The Wigner distributions for unpolarized, longitudinally polarized and transversely polarized electron are presented in transverse momentum plane as well as in impact parameter plane. The spin-spin correlations between the bare electron and the physical electron are discussed. We also evaluate all the leading twist generalized transverse momentum distributions (GTMDs) for electron.Comment: 27 pages, 18 figures, text modified, version accepted in Nuclear Physics

    Review on DNA Cryptography

    Get PDF
    Cryptography is the science that secures data and communication over the network by applying mathematics and logic to design strong encryption methods. In the modern era of e-business and e-commerce the protection of confidentiality, integrity and availability (CIA triad) of stored information as well as of transmitted data is very crucial. DNA molecules, having the capacity to store, process and transmit information, inspires the idea of DNA cryptography. This combination of the chemical characteristics of biological DNA sequences and classical cryptography ensures the non-vulnerable transmission of data. In this paper we have reviewed the present state of art of DNA cryptography.Comment: 31 pages, 12 figures, 6 table

    Quantum Speed Limit For Mixed States Using Experimentally Realizable Metric

    Full text link
    The minimal time required for a system to evolve between two different states is an important notion for developing ultra-speed quantum computer and communication channel. Here, we introduce a new metric for non-degenerate density operator evolving along unitary orbit and show that this is experimentally realizable operation dependent metric on quantum state space. Using this metric, we obtain the geometric uncertainty relation that leads to a new quantum speed limit. Furthermore, we argue that this gives a tighter bound for the evolution time compared to any other bound. We also obtain a Levitin kind of bound for mixed states. We propose how to measure this new distance and speed limit in quantum interferometry. Finally, the lower bound for the evolution time of a quantum system is studied for any completely positive trace preserving map using this metric.Comment: Latex, 8+\epsilon pages, 1 Fig accepted in PL
    • …
    corecore