60 research outputs found

    Fused Silica Capillary Interferometer with a layer-by-layer Functional Coating for the Analysis of Chemicals Content in Aqueous Solutions

    Get PDF
    A simple fused silica capillary interferometric (FSCI) sensor has been proposed and investigated for the detection and analysis of multiple chemical compounds content in aqueous solutions. The sensor was fabricated by splicing a commercially available fused silica capillary (FSC) with two single mode fibers to create a 0.7 cm long air cavity. The fiber surface was functionalized with two different polymers: poly (allylamine hydrochloride) (PAH) and sol-gel silica in sequence using a layer-by-layer deposition method. The operating principle of the sensor relies on light interference in the fused silica capillary cavity due to adhesion of the different chemical compounds on the functional coating surface. Studies of the sensors response to the presence of five different compounds in water solutions at different concentrations have been carried out and the results have been analyzed using the principal component analysis (PCA). This work is a preliminary investigation towards the development of a novel method for assessment of content and quality of alcoholic beverages in real time using functionalized FSCI

    Fused silica capillary interferometer with a layer-by-layer functional coating for the analysis of chemicals content in aqueous solutions

    Get PDF
    A simple fused silica capillary interferometric (FSCI) sensor has been proposed and investigated for the detection and analysis of multiple chemical compounds content in aqueous solutions. The sensor was fabricated by splicing a commercially available fused silica capillary (FSC) with two single mode fibers to create a 0.7 cm long air cavity. The fiber surface was functionalized with two different polymers: poly (allylamine hydrochloride) (PAH) and sol-gel silica in sequence using a layer-by-layer deposition method. The operating principle of the sensor relies on light interference in the fused silica capillary cavity due to adhesion of the different chemical compounds on the functional coating surface. Studies of the sensors response to the presence of five different compounds in water solutions at different concentrations have been carried out and the results have been analyzed using the principal component analysis (PCA). This work is a preliminary investigation towards the development of a novel method for assessment of content and quality of alcoholic beverages in real time using functionalized FSCIs

    Sensing of multiple parameters with whispering gallery mode optical fiber micro-resonators

    Get PDF
    Monitoring of multiple physical parameters, such as humidity, temperature, strain, concentrations of certain chemicals or gases in various environments is of great importance in many industrial applications both for minimizing adverse effects on human health as well as for maintaining production levels and quality of products. In this paper we demonstrate two different approaches to the design of multi-parametric sensors using coupled whispering gallery mode (WGM) optical fiber micro-resonators. In the first approach, a small array of micro-resonators is coupled to a single fiber taper, while in the second approach each of the micro-resonators within an array is coupled to a different tapered fiber section fabricated along the same fiber length. Simultaneous measurement of relative humidity and ammonia concentration in air is demonstrated with an array of two microspheres with different functional coatings coupled to a single fiber taper. Sensitivity to ammonia of 19.07 pm/ppm ammonia molecules and sensitivity to relative humidity of 1.07 pm/% RH have been demonstrated experimentally. In the second approach, an inline cascade of two cylindrical micro-resonators fabricated by coupling to multiple tapered sections along a single optical fiber is demonstrated for measurement of strain and temperature simultaneously. A strain sensitivity of 1.4 pm/με and temperature sensitivity of 330 pm/ºC have been demonstrated experimentally. Both the proposed sensing systems have the potential for increase of the number of microresonators within an array for sensing of a larger number of parameters allowing for reduction of the overall cost of sensing system

    A Packaged Whispering Gallery Mode Strain Sensor Based on a Polymer-Wire Cylindrical Micro Resonator

    Get PDF
    We propose a whispering gallery mode (WGM) strain sensor formed by a polymer-wire cylindrical micro resonator for strain measurement applications. WGMs are generated by evanescently coupling light into the polymer-wire resonator from a silica fiber taper fabricated by the micro heater brushing technique. Accurate and repeatable measurements of strains up to one free spectral range shift of the WGMs (corresponding to 0.33% of the polymer-wire elongation, 3250 με) are demonstrated experimentally with the proposed sensor. Practical packaging method for the proposed strain sensor on a glass microscope slide has also been realized making the sensor portable and easy to handle. The robustness of the packaged coupling system is confirmed by vibration tests. The performance of the packaged strain sensor is evaluated and compared with that for an unpackaged sensor

    Thermo-optic tuning of a packaged whispering gallery mode resonator filled with nematic liquid crystal

    Get PDF
    Thermo-optic tuning of whispering gallery modes (WGMs) in a nematic liquid crystal-filled thin-walled capillary tube resonator is reported. WGMs were excited by the evanescent field from a tapered optical fiber. Tapered optical fiber fabrication and reduction of wall thickness of the capillary tube was carried out by a ceramic micro-heater brushing technique. A simple and robust packaging technique is demonstrated to ensure stable and repeatable operation of the device. Tunability of WGMs with temperature was demonstrated with a sensitivity of 267.5 ± 2.5 pm/°C. The demonstrated thermo-optic method for WGMs tuning is potentially useful for many tunable photonic devices and sensors

    Studies of Geometrical Profiling in Fabricated Tapered Optical Fbers Using Whispering Gallery Modes Spectroscopy

    Get PDF
    This paper experimentally demonstrates a method for geometrical profiling of asymmetries in fabricated thin microfiber tapers with waist diameters ranging from ∼10 to ∼50µm with submicron accuracy. The method is based on the analysis of whispering gallery mode resonances excited in cylindrical fiber resonators as a result of evanescent coupling of light propagating through the fiber taper. The submicron accuracy of the proposed method has been verified by SEM studies. The method can be applied as a quality control tool in fabrication of microfiber based devices and sensors or for fine-tuning of microfiber fabrication set-ups

    Silica Gel Coated Spherical Micro resonator for Ultra-High Sensitivity Detection of Ammonia Gas Concentration in Air

    Get PDF
    A silica gel coated microsphere resonator is proposed and experimentally demonstrated for measurements of ammonia (NH3) concentration in air with ultra-high sensitivity. The optical properties of the porous silica gel layer change when it is exposed to low (parts per million (ppm)) and even ultra-low (parts per billion (ppb)) concentrations of ammonia vapor, leading to a spectral shift of the WGM resonances in the transmission spectrum of the fiber taper. The experimentally demonstrated sensitivity of the proposed sensor to ammonia is estimated as 34.46 pm/ppm in the low ammonia concentrations range from 4 ppm to 30 ppm using an optical spectrum analyser (OSA), and as 800 pm/ppm in the ultra-low range of ammonia concentrations from 2.5 ppb to 12 ppb using the frequency detuning method, resulting in the lowest detection limit (by two orders of magnitude) reported to date equal to 0.16 ppb of ammonia in air. In addition, the sensor exhibits excellent selectivity to ammonia and very fast response and recovery times measured at 1.5 and 3.6 seconds, respectively. Other attractive features of the proposed sensor are its compact nature, simplicity of fabrication

    A Coated Spherical Microresonator for Measurement of Water Vapor Concentration at PPM Levels in Very Low Humidity Environments

    Get PDF
    This paper presents a novel approach to measurements of low relative humidity (RH) values based on the whispering gallery modes (WGMs) effect in a small silica microsphere coated with a thin layer of Agarose hydrogel. The light from a narrow-linewidth tunable laser with a few GHz tuning range is launched into an adiabatic tapered fiber, which excites WGMs in the Agarose layer via evanescent coupling. Adsorption and desorption of water vapor by the Agarose layer in response to changes in ambient humidity lead to changes in the layer's refractive index, which in turn leads to a spectral shift of the WGM resonances. We experimentally demonstrate the WGMs spectral shift over a range of RH values from 1%RH to 25%RH. The proposed sensor displays linear response and is capable of measurement of low concentrations of water vapor (corresponding to about 11.7 ± 0.32 ppm water molecules in air). In addition, the proposed sensor offers the advantages of a very small form factor and good repeatability. Detailed studies of the sensor stability, cross sensitivity to temperature, response times, and hysteresis are also presented

    Agarose coated spherical micro resonator for humidity measurements

    Get PDF
    A new type of fiber optic relative humidity (RH) sensor based on an agarose coated silica microsphere resonator is proposed and experimentally demonstrated. Whispering gallery modes (WGMs) in the micro resonator are excited by evanescent coupling using a tapered fiber with ~3.3 µm waist diameter. A change in the relative humidity of the surrounding the resonator air induces changes in the refractive index (RI) and thickness of the Agarose coating layer. These changes in turn lead to a spectral shift of the WGM resonances, which can be related to the RH value after a suitable calibration. Studies of the repeatability, long-term stability, measurement accuracy and temperature dependence of the proposed sensor are carried out. The RH sensitivity of the proposed sensor depends on the concentration of the agarose gel which determines the initial thickness of the deposited coating layer. Studies of the micro- resonators with coating layers fabricated from gels with three different Agarose concentrations of 0.5%, 1.125% and 2.25 wt./vol.% showed that an increase in the initial thickness of the coating material results in an increase in sensitivity but also leads to a decrease of quality factor (Q) of the micro resonator. The highest sensitivity achieved in our experiments was 518 pm/%RH in the RH range from 30% to 70%. The proposed sensor offers the advantages of a very compact form factor, low hysteresis, good repeatability, and low cross sensitivity to temperature

    Porous silica coated spherical microresonator for vapor phase sensing of ammonia at a sub-ppm level

    Get PDF
    A new type of fiber optic sensor for detection and quantification of ammonia (NH3) vapors is proposed and experimentally demonstrated. This sensor is based on a spherical silica micro resonator coated with porous silica gel. Whispering gallery modes (WGMs) in the micro resonator are excited by evanescent coupling to a tapered fiber with a 3.3 µm waist diameter. The optical properties of the porous silica layer change when it is exposed to ammonia vapor, leading to a spectral shift of the WGM resonant wavelengths. The sensitivity of the proposed sensor has been tested by exposing it to different low level concentrations of ammonia: 4 ppm,8 ppm,12 ppm and 30 ppm at constant relative humidity (50% RH) and constant temperature (230 C). The response and recovery times are measured as 100 and 570 seconds respectively
    corecore