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Abstract: A new type of fiber optic relative humidity (RH) sensor based on an agarose coated 
silica microsphere resonator is proposed and experimentally demonstrated. Whispering 
gallery modes (WGMs) in the micro resonator are excited by evanescent coupling using a 
tapered fiber with ~3.3 µm waist diameter. A change in the relative humidity of the 
surrounding the resonator air induces changes in the refractive index (RI) and thickness of the 
Agarose coating layer. These changes in turn lead to a spectral shift of the WGM resonances, 
which can be related to the RH value after a suitable calibration. Studies of the repeatability, 
long-term stability, measurement accuracy and temperature dependence of the proposed 
sensor are carried out. The RH sensitivity of the proposed sensor depends on the 
concentration of the agarose gel which determines the initial thickness of the deposited 
coating layer. Studies of the micro- resonators with coating layers fabricated from gels with 
three different Agarose concentrations of 0.5%, 1.125% and 2.25 wt./vol.% showed that an 
increase in the initial thickness of the coating material results in an increase in sensitivity but 
also leads to a decrease of quality factor (Q) of the micro resonator. The highest sensitivity 
achieved in our experiments was 518 pm/%RH in the RH range from 30% to 70%. The 
proposed sensor offers the advantages of a very compact form factor, low hysteresis, good 
repeatability, and low cross sensitivity to temperature. 
©2016 Optical Society of America 

OCIS codes: (140.4780) Optical resonators; (230.3990) Micro-optical devices; (060.2370) Fiber optics sensors; 
(060.4005) Microstructured fibers. 
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1. Introduction 
Whispering gallery mode (WGM) based micro resonators have attracted significant attention 
from researchers for applications in various photonic devices and sensors due to their ultra-
high quality factors (Q), low absorption loss and easy and inexpensive fabrication methods. A 
significant amount of research work has been carried out on various micro resonator shapes, 
such as microspheres [1,2], microdisks [3] and microtubes [4]. Inside such a circular-shaped 
resonator the light propagates in the form of whispering gallery modes as a result of total 
internal reflection. Due to their extreme sensitivity to the size of the resonator and also to the 
refractive indices of the resonator and the surrounding medium, WGMs can be used for 
sensing of various parameters such as molecular adsorption [2], refractive index [5] and stress 
[6]. Polymer coated spherical microresonators have been previously developed for chemical 
vapor sensing [7]. When an optical microresonator is coated with a thin layer of polymer, 
WGM frequency shift occurs when the polymer undergoes a change in refractive index or 
thickness. This change can be induced for example by adsorption from the local environment 
by quantities such as the ammonia vapor [7]. 

Measurement of humidity is important in a wide range of applications, including 
meteorology, agriculture, food industry, clinical medicine, manufacturing, civil engineering 
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and many other fields [8–10]. Several types of fiber optic humidity sensors have been 
proposed and demonstrated to date, including a scheme based on fluorescence [11], fiber 
Bragg gratings [12], interferometry [13] and surface plasmon resonance [14]. Many of these 
sensing techniques involve using humidity sensitive coatings or gels on the surfaces or end 
faces of the optical fiber. For example, hydrogel polymers, such as polyvinyl alcohol (PVA) 
[15,16], polyethylene glycol [17] and Agarose [18], have been previously proposed and 
studied as coating materials for optical fiber based humidity sensors. Such polymer coatings 
have the advantage of good reproducibility and long term stability. The coatings usually swell 
physically and experience a refractive index change in response to changes in relative 
humidity (RH). For example, Barian et al. [18] demonstrated a tapered fiber coated with 
Agarose gel for humidity sensing based on the refractive index change of Agarose, which is 
linear over a wide range of RH values [19]. 

In this paper we propose a new type of fiber optic humidity sensor based on an Agarose 
coated silica microsphere resonator. WGMs are excited in the Agarose coated microsphere by 
coupling evanescent light to and from a tapered fiber. In this case the tapered fiber has a ~3.3 
µm waist diameter. Fabrication of the microsphere and the fiber taper is an inexpensive 
process and involves commercially available fibers. Agarose gel is well known as a 
hygroscopic polymer commonly used in biological research [20,21], with an advantage of 
better long-term stability compared with materials used in [22] and [23]. Three sensor 
samples based on the silica microspheres dip-coated with Agarose gel of different 
concentrations (0.5, 1.125 and 2.25 wt./vol. %) are experimentally investigated. A detailed 
study of the sensor in terms of its sensitivity, repeatability, long-term stability and 
measurement accuracy is reported. 

2. Experimental setup and sensor fabrication 

2.1 Fiber taper fabrication 

Tapered fiber with a waist diameter of ~3.3 µm was prepared from a standard single-mode 
telecommunications optical fiber (SMF-28 Corning) with core and cladding diameters of 8.3 
and 125 µm respectively. For the experiments, a 1.5 m length of this fiber was used and a 3 
cm-long section at the center was stripped off its coating by a mechanical stripper. The 
stripped part was cleaned with isopropyl alcohol and then fixed horizontally between two 
computer controlled XYZ translational stages. The tapered fiber was then fabricated by means 
of the customized micro-heater brushing technique described in [24]. A ceramic micro heater 
(CMH-7019, NTT-AT) was used to heat the fiber up to approximately 1300°C, making the 
silica material soft enough for tapering. A customized PC program allowed for an accurate 
control of the diameter, the length and the shape of the fabricated tapers [25]. In our 
experiment the tapered waist diameter is approximately 3.3 micron, the waist length is around 
L1 = 2 mm and the full taper length is circa L2 = 12 mm (as shown in Fig. 1). The fabricated 
fiber taper was then fixed on a glass slide at a height of ~5 mm from the slide surface using 
two drops of UV curable epoxy (Norrland). The total length of the fiber between the cured 
epoxy droplets was L3 = 4 cm. 
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Fig. 1. Schematic diagram of the tapered fiber used for coupling the light into the microsphere. 
The waist diameter W = 3.3 µm, waist length L1 = 2 mm, full taper length L2 = 12 mm and the 
length of the taper between the cured epoxy droplets on the microscope slide L3 = 4 cm. 

2.2 Microsphere fabrication 

The microsphere for our experiments was fabricated at the tip of a standard single mode fiber 
SMF-28. A small length of fiber (~3.8 cm) was stripped from one end, cleaned with isopropyl 
alcohol and cleaved. The cleaved end of the fiber was placed inside a fusion splicer 
(Sumitomo Type-36). A series of electric arc discharges was then applied to the cleaved end 
of the fiber so that the tip of the fiber was gradually melted, assuming a spherical shape as the 
glass softens due to surface tension. The diameter of the sphere increases with the number of 
arcs applied. In our experiment we used a silica microsphere with a diameter of 171 µm (Fig. 
2). A variety of microsphere diameters were fabricated but it was found that for our purposes 
the diameter had little effect on the sensing performance. 

 

Fig. 2. Optical microscope image of the microsphere with the diameter of 171 µm used in the 
experiment. 

2.3 Agarose gel coating preparation 

Agarose is a complex sugar (polysaccharide) derived from the seaweed. Agarose gel is porous 
in nature and is used widely to separate, identify and purify nucleic acid in the field of bio 
chemistry [26]. It is usually sold in a form of white powder soluble in water at 34-38°C. In 
our experiment Agarose powder, obtained from Sigma Aldrich (A6013), was dissolved in 
water, in proportions of 0.5, 1.125 and 2.25 wt./vol.%. The solutions then were heated up to 
65°C. To dissolve the Agarose in distilled water, the beaker containing the mixture was 
placed on a heater combined with a magnetic stirrer. Microsphere samples were dipped into 
the hot Agarose solution and pulled out very fast. When the Agarose solution cools down and 
reaches room temperature, it polymerizes to form hydrogel and will not assume a liquid form 
again unless it is heated above the melting point. All coated microspheres were left to dry for 
48 hours at room temperature. 
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2.4 Experimental set-up for RH measurements 

Figure 3 shows the experimental set-up for the humidity sensor characterization. The system 
consists of a broadband light source (Thorlabs S5FC1005S), polarization controller, optical 
spectrum analyzer (OSA, Advantest Q8384) and a temperature controlled humidity chamber 
(ETS 5503). The fiber taper fixed on a glass slide is placed inside the humidity chamber. The 
environmental chamber consists of ~0.11 m3 air tight space with an inlet and an outlet. The 
upper inlet is made for the entry of the moist air into the chamber and the outlet is used for 
dragging the moist air to the dehumidifier through a pump. The dehumidifier box contains 
anhydrous calcium sulfate which absorbs moisture from the air. The compressed dry air is 
pumped to regulate the RH in the chamber. The humid air was obtained by bubbling dry air 
into the ultrasonic humidification system (ETS5462) controlling the ratio of humid air and 
compressed dry air in the chamber to achieve the required value of RH. This data is fed to the 
humidity controller through the reference sensor head. The chamber controller system allows 
for independent setup of both temperature and humidity inside the chamber. The accuracy of 
the chamber is ± 2% RH. Each humidity measurement was recorded five minutes after the RH 
level reached a certain set value to allow the humidity level to stabilize throughout the 
chamber. 

 

Fig. 3. Experimental set-up used for RH measurement using spherical microresonator. 

2.5 Sensor characterization 

The coated microsphere was placed in contact with the tapered fiber inside the humidity 
chamber. Light from the broadband superluminescent light source (SLD) operating in the 
wavelength range 1530-1570 nm was launched into the fiber taper and the corresponding 
transmission spectrum was observed at the taper output by means of the OSA. The 
wavelength resolution of the OSA was 10 pm. The microsphere, mounted on a XYZ nano-
positioning stage, was gradually and carefully brought in direct contact with the tapered fiber 
until the WGM resonances were clearly observed in the transmission spectrum of the fiber 
taper. The polarization controller was also adjusted manually to achieve maximum light 
coupling efficiency. The humidity chamber was then closed and left to stand for one hour in 
order to stabilize the RH and temperature throughout its volume. In order to eliminate the 
effect of temperature variations, the temperature of the humidity chamber was set to a 
constant 25 °C (close to room temperature) throughout the entire RH measurement cycle. 

3. Results and discussion 
3.1 Spectrum characterization 

Figure 4 illustrates a typical fiber taper transmission spectrum achieved with the Agarose 
coated microsphere. As can be seen from the figure, WGM resonances are clearly observed in 
the spectrum. The value of the free spectral range (F.S.R) determined from the graph (3.141 
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nm) can be used to estimate the microsphere diameter or its effective refractive index (RI) 
based on the approximate formula [27]: 

 
2
0F.S.R

effDn

λ
π

≈  (1) 

where λ0, neff and D are the resonant wavelength, the effective refractive index of the 
fundamental WGM for the microsphere and the microsphere diameter, respectively. Effective 
RI can be calculated by solving the wave equation described in [28] considering the RIs of 
silica (1.4682) and the Agarose layer (1.336). This numerical calculation resulted in the neff = 
1.4321 for this case, so that resulting from the Eq. (1) microsphere diameter is 170.83 µm, 
which is in a good agreement with the result of the microscopic measurement (Fig. 2). 

The Q-factors for the microsphere before and after its coating with an Agarose layer were 
estimated from the experimental spectra by measuring the full width at half maximum 
(FWHM) of the WGM resonance near 1551 nm (inset in Fig. 4 illustrates the corresponding 
WGM resonance and its Lorentz fitting in the spectrum of the microsphere before its coating 
with Agarose). The FWHM for an uncoated microsphere was 14.47 pm at the wavelength of 
1557.3493 nm. The corresponding value of the Q- factor was calculated as 1.076 × 105. After 
application of the Agarose coating on the microsphere surface the Q-factor decreased to 1.56 
× 104. Such a decrease in the Q-factor is likely due to scattering caused by the surface 
roughness and higher absorption and scattering within the Agarose layer. 

 

Fig. 4. Transmission spectrum recorded with an Agarose coated microsphere with a diameter 
of 171 µm. 

3.2 RH dependency 

We recorded a series of transmission spectra for the sensor at different RH values in the range 
from 35% to 81% RH. The corresponding results for the microsphere coated with 2.25% 
concentration Agarose solution are shown in Fig. 5(a). As can be seen from the figure, an 
increase in the surrounding RH leads to a red shift of the WGM spectrum. This could be 
explained by the fact that when the surrounding RH increases, the Agarose coating absorbs 
more water from the environment which leads to an increase of the effective refractive index 
of the coating and also to an increase of the coating thickness, with both factors contributing 
to the spectral shift of the WGMs. Figure 5(b) illustrates the shift of a selected WGM resonant 
wavelength versus RH at a constant temperature of 25°C. Two RH ranges within which the 
dependencies are almost linear but have different slopes can be identified as follows: lower 
RH range (38.7-65.7%) with lower sensitivity and a higher RH range (65.7-81%) with higher 
sensitivity. The corresponding RH sensitivity values estimated from the graph are 17.51 
pm/%RH and 53 pm/%RH. 
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It can also be noticed from Fig. 5(a) that for the RH values above 70%, losses in the 
transmission spectrum increases rapidly. The main reason for such high losses may be the 
mechanical stress and resulting bend experienced by the tapered fiber due to accumulation of 
the water molecules on its surface. As mentioned in the previous section, the fiber taper was 
stretched in the air 5 mm above the microscopic glass slide inside the chamber so that 
accumulation of a quantity of water on the surface of the fiber taper may cause a slight 
sagging of the fiber taper. Another possible reason for the increased loss is the increase of 
absorption by the micro resonator material due to the change of the Agarose layer properties 
at high RH. To further investigate the influence of the high RH levels on the sensor 
performance, an additional experiment was carried out with the same tapered fiber but with an 
uncoated microsphere of the same diameter in the RH range from 28% to 92%. The results are 
presented in Fig. 5(c) where it can be seen that the overall loss increases by circa 5 dB when 
the RH changes from 69% to 92%. A small (~36 pm, equivalent to 0.56 pm/%RH) 
wavelength shift is also observed, possibly due to stress induced onto the fiber by the water 
weight. 

 

Fig. 5. Experimental results for the WGM resonator based on a 171 µm diameter microsphere 
coated with 2.25% Agarose gel coupled with a 3.3 µm tapered fiber in the range of humidity 
from 35% to 81% RH at a constant temperature of 25 °C. (a) WGM spectra at different RH 
levels; (b) wavelength shift of the WGM spectrum versus RH; (c) humidity response of the 
WGM spectrum for an uncoated microsphere resonator; (d) spectral shift versus RH for the 
sensors based on the same diameter microsphere coated with the Agarose solutions of different 
concentrations. 

3.3 Coating thickness dependency 

It should be noted that the average transmission loss level also depends on other factors, such 
as the tapered fiber waist diameter and the coating thickness on the surface of the 
microsphere. To investigate the effect of coating thickness, three different solutions with 
Agarose concentrations of 0.5%, 1.125% and 2.25 wt./vol. % were prepared and applied to 
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the microspheres of the same diameter (171 µm). Figure 5(d) shows that the RH sensitivity of 
the sensor depends significantly on the concentration of the Agarose solution used to form a 
coating layer. As can be seen from Fig. 5 (d) the highest RH sensitivity is achieved with the 
2.25% Agarose solution in the range of RH from 25% to 65%. 

The influence of the thickness of the polymer coating on the RH sensitivity of such a 
microsphere resonator can be analyzed as follows. It is known that the Q factor of an uncoated 
micro resonator is determined by the total loss including radiation loss, scattering loss from 
the surface irregularities and by material absorption, which can be expressed by Eq. (2) [27]: 

 
( ) ( ) .

1 1 1 1 1 1

in rad abs abs s s couplingsilica agarose
Q Q Q Q Q Q

= + + + +  (2) 

where 1/Qrad denotes intrinsic radiative (curvature) losses of the resonator, 1/(Qabs)silica and 
1/(Qabs)agarose denote the material absorption loss within the silica microsphere and the 
polymer layer, respectively, 1/Qs.s. denotes scattering losses due to the microresonator surface 
inhomogeneities and 1/Qcoupling - losses due to coupling with the fiber taper. 1/Qrad can be 
neglected in our case since this term vanishes exponentially for the resonators with D/λ ≥ 15 
[27]. The absorption limited Q factors can be calculated as (Qabs)silica = 2πns/λRαs and 
(Qabs)agarose = 2πna/λRαa, where αs, ns and αa, na are optical attenuation coefficients per unit 
length and refractive indices of silica and Agarose layer respectively. Since optical attenuation 
within the Agarose layer is several order of magnitude higher than that in silica, so the term 
1/(Qabs)agarose will be much higher than 1/(Qabs)silica. When the polymer layer thickness 
increases, greater portion of light energy is distributed within the polymer and thus the change 
in the polymer’s RI (na) in response to changing RH leads to a higher RH sensitivity of the 
micro resonator. However, as the thickness of the polymer layer increases, the larger material 
absorption loss in the polymer compared to silica contributes to an overall decrease of the Q 
factor for coated resonators. Another significant contribution to the overall losses is due to 
scattering on the surface inhomogeneities, which strongly depends on their rms size and 
correlation length. In practice the total Q factor for the Agarose coated resonators considered 
in this study is limited by the last three terms of Eq. (2). 

To further analyze the influence of the coating layer thickness, we carried out a series of 
experiments for a silica microsphere of a fixed diameter (100 µm) which was coated with 2.25 
wt./vol.% Agarose gel applied multiple times through repeated coating cycles, forming 
coatings with progressively larger thickness values. The WGM spectra of the coated sphere 
were recorded after one, two, three, four, five and six coating cycles respectively using the 
same setup and the same tapered fiber at a constant temperature (23 ± 0.4°C) and humidity 
(66%RH). The spectra were further analyzed to estimate the corresponding Q-factors, as 
illustrated in Fig. 6 (a, b). 

The quality factor can be calculated as Q = λres/ΔλFWHM, where λres is the resonance 
wavelength and ΔλFWHM is the FWHM of the resonant lobe. We estimated the FWHM as 33.3 
pm and 51.52 pm at the wavelengths of 1545.261 nm and 1545.035 nm, respectively. The 
corresponding Q factor values are thus estimated as 4.64x104 for the microsphere after the 
first coating cycle and 2.99x104 for the same microsphere after two coating cycles were 
carried out. As illustrated in Fig. 6 (c), the Q-factor of the sphere gradually decreased with 
each consequent coating cycle. 

                                                                                                  Vol. 24, No. 19 | 19 Sep 2016 | OPTICS EXPRESS 21223 



 

Fig. 6. Experimental spectra and Lorentzian fitting for a 100 µm diameter microsphere coated 
with 2.25% Agarose hydrogel: a) after one coating cycle; b) after three coating cycles; c) Q-
factor versus the number of coating cycles. 

The RH sensitivity of the sensors based on the same silica microsphere with different 
thicknesses of the Agarose coating was also investigated in the RH range from 30% to 70% 
RH and the results are presented in Fig. 7(a). The resonance wavelength shift over the entire 
humidity range was 0.41 nm for the sensor with a single coating, 0.964 nm for the sensor 
coated twice and 1.54 nm for the same sensor after three coating cycles. Although the 
thickness of the Agarose gel could not be controlled accurately, these results demonstrate that 
sensitivity gradually increases with the increase of the Agarose layer thickness. The maximum 
sensitivity in our experiments was observed for the sensor coated six times and was estimated 
at 518 pm/%RH which is significantly higher than that of 10 pm/%RH for the sensor with 
single coating as illustrated in Fig. 7(b). 

This result is also, to the best of our knowledge, the highest sensitivity reported for 
Agarose coated fiber optic sensors, including that of 114.7 pm/%RH in the range 25%-96% 
RH for an Agarose- coated long-period grating (LPG) reported in [29] and for an Agarose-
coated photonic crystal fiber interferometer previously reported by our group in [30], where 
for the same number of coating cycles the sensitivity was ~200 pm/%RH in the range of 30-
90%RH. 
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Fig. 7. (a) RH response of the sensor based on a 100 µm diameter microsphere with a different 
number of Agarose layers: (b) Q-factor and estimated RH sensitivity for the 100 µm diameter 
microsphere with a different number of Agarose coating layers. 

3.4 Sensor characterization 

The detection limit of the proposed sensor is calculated as the ratio of sensor resolution (R) to 
the sensitivity of the sensor (S). The sensor resolution depends upon the different sources of 
noise involved in the measurement and determined by the Eq. (3) [31]: 

 3 2 2 2
amp noise temp induced spect resR (σ σ σ )− − −= + +  (3) 

where 

 
0.254.5( )amp noise SNR

λσ −
Δ≈   

σ is the standard deviation of resulting spectral variation and Δλ is the full-width half 
maximum of the mode amplitude derived from the Q factor by Q = λ/Δλ. The Q-factor of the 
171 µm coated microsphere calculated from the transmitted spectrum was 1.69 x 104 and the 
FWHM calculated by fitting the resonance dip with Lorentz equation was 91.06 pm at λ = 
1537.164 nm. We assumed the SNR (Signal to Noise Ratio) of the system is approximately 
60 dB, then the σamp-noise is calculated as 0.636 pm. We also assumed the standard deviation 
due to temperature stabilization is 10 fm [28]. The spectral resolution of the optical spectrum 
analyzer used for our experiment is 10 pm ± 3%. The error in determining the position of the 
resonant mode is uniformly distributed between −0.3 pm to + 0.3 pm and the resulting 
standard deviation of spect resσ −  is 0.2236 pm. The overall sensor resolution is R = 2.0227 pm. 

The detection limit of a 171 µm diameter coated microsphere is 1.15 x 10-1%RH in the 
humidity range 38.7 −65.7%RH and 3.816 x 10-2%RH in the humidity range 65.7-81%RH. It 
should be noted that the detection limit also depends on the nature of the optical source, where 
a narrow line width source will improve the detection limit [31]. However, such an 
improvement is not included or assumed here as in our case we used a broadband source. 

3.5 Sensor stability 

To test the stability of the sensor, RH measurements were carried out using the same sensor 
sample after a time interval of seven days in the RH range from 35% to 65% at a constant 
temperature. The sample used in this experiment was a 171 µm diameter microsphere coated 
with a 2.25% Agarose concentration gel. It can be seen in Fig. 8 (a), that the performance of 
the sensor is quite stable over one week with small fluctuations only. Figure 8 (b) illustrates 
studies of the hysteresis characteristics using data from humidification-dehumidification cycle 
for the three sensors based on the 171 µm diameter microspheres coated with hydrogel films 
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with Agarose concentrations of 0.5, 1.125 and 2.25 wt./vol.%. It can be seen from the figure 
that all the three sensors demonstrate very small or no hysteresis. 

 

Fig. 8. (a) Relative humidity responses of the sensor, measurements recorded seven days apart; 
(b) studies of the sensor hysteresis: humidity response for the 171 µm microspheres coated 
with different Agarose concentration coatings during RH increase-decrease cycle at 25°C. 

Finally, to investigate the effect of temperature on the RH sensor performance, the 
humidity in the chamber was set to constant at 41% RH. The temperature was then gradually 
raised from 16 °C to 27 °C. The wavelength shift of the WGM spectrum with temperature is 
shown in Fig. 9. It can be noted that the temperature sensitivity of the sensor is small 
compared to its RH sensitivity. For a 171 µm diameter sensor coated with 2.25% of Agarose 
hydrogel it is estimated as ~6 pm/°C in the temperature range of 16 −27 °C. 

 

Fig. 9. Resonance wavelength shift versus temperature for the 171 µm microsphere coated with 
2.25% wt./vol. Agarose solution at 41% RH. 

4. Conclusion 
A novel type of relative humidity sensor based on a whispering gallery mode microresonator 
has been proposed and experimentally demonstrated. WGMs are excited in the silica 
microsphere dip-coated with an Agarose gel evanescently coupled to a tapered fiber. Changes 
in the refractive index and thickness of the Agarose coating arising due to changes in the 
surrounding relative humidity lead to a spectral shift of the WGM resonances which can be 
related to the RH value after a suitable sensor calibration. The RH sensitivity of the proposed 
sensor depends on the concentration of the Agarose gel which determines the initial thickness 
of the coating deposited on the microsphere. Studies of the coating layers fabricated from gels 
with three different Agarose concentrations of 0.5%, 1.125% and 2.25 wt./vol.% and also by 
application of coating with the same Agarose concentration through repeated coating cycles 
showed that an increase in the thickness of the coating material results in an increase in 
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sensitivity but also leads to a decrease of quality factor of the micro resonator. The highest 
sensitivity achieved in our experiments was 518 pm/% RH in the RH range from 30% to 70%. 
The proposed sensor offers the advantages being very compact in nature, whilst also 
demonstrating low hysteresis, good repeatability, and a relatively low cross sensitivity to 
temperature. 
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