35,932 research outputs found

    Geometric quantum computation using fictitious spin- 1/2 subspaces of strongly dipolar coupled nuclear spins

    Get PDF
    Geometric phases have been used in NMR, to implement controlled phase shift gates for quantum information processing, only in weakly coupled systems in which the individual spins can be identified as qubits. In this work, we implement controlled phase shift gates in strongly coupled systems, by using non-adiabatic geometric phases, obtained by evolving the magnetization of fictitious spin-1/2 subspaces, over a closed loop on the Bloch sphere. The dynamical phase accumulated during the evolution of the subspaces, is refocused by a spin echo pulse sequence and by setting the delay of transition selective pulses such that the evolution under the homonuclear coupling makes a complete 2π2\pi rotation. A detailed theoretical explanation of non-adiabatic geometric phases in NMR is given, by using single transition operators. Controlled phase shift gates, two qubit Deutsch-Jozsa algorithm and parity algorithm in a qubit-qutrit system have been implemented in various strongly dipolar coupled systems obtained by orienting the molecules in liquid crystal media.Comment: 37 pages, 17 figure

    Diffuse Neutron Scattering Study of Magnetic Correlations in half-doped La0.5Ca0.5-xSrxMnO3 (x = 0.1, 0.3 and 0.4) Manganites

    Full text link
    The short range ordered magnetic correlations have been studied in half doped La0.5Ca0.5-xSrxMnO3 (x = 0.1, 0.3 and 0.4) compounds by polarized neutron scattering technique. On doping Sr2+ for Ca2+ ion, these compounds with x = 0.1, 0.3, and 0.4 exhibit CE-type, mixture of CE-type and A-type, and A-type antiferromagnetic ordering, respectively. Magnetic diffuse scattering is observed in all the compounds above and below their respective magnetic ordering temperatures and is attributed to magnetic polarons. The correlations are primarily ferromagnetic in nature above T\_N, although a small antiferromagnetic contribution is also evident. Additionally, in samples x = 0.1 and 0.3 with CE-type antiferromagnetic ordering, superlattice diffuse reflections are observed indicating correlations between magnetic polarons. On lowering temperature below T\_N the diffuse scattering corresponding to ferromagnetic correlations is suppressed and the long range ordered antiferromagnetic state is established. However, the short range ordered correlations indicated by enhanced spin flip scattering at low Q coexist with long range ordered state down to 3K. In x = 0.4 sample with A-type antiferromagnetic ordering, superlattice diffuse reflections are absent. Additionally, in comparison to x = 0.1 and 0.3 sample, the enhanced spin flip scattering at low Q is reduced at 310K, and as temperature is reduced below 200K, it becomes negligibly low. The variation of radial correlation function, g(r) with temperature indicates rapid suppression of ferromagnetic correlations at the first nearest neighbor on approaching TN. Sample x = 0.4 exhibits growth of ferromagnetic phase at intermediate temperatures (~ 200K). This has been further explored using SANS and neutron depolarization techniques.Comment: 13 pages, 12 figures, To appear in Physical Review

    Reflection of light and heavy holes from a linear potential barrier

    Full text link
    In this paper we study reflection of holes in direct-band semiconductors from the linear potential barrier. It is shown that light-heavy hole transformation matrix is universal. It depends only on a dimensionless product of the light hole longitudinal momentum and the characteristic length determined by the slope of the potential and doesn't depend on the ratio of light and heavy hole masses, provided this ratio is small. It is shown that the transformation coefficient goes to zero both in the limit of small and large longitudinal momenta, however the phase of a reflected hole is different in these limits. An approximate analytical expression for the light-heavy hole transformation coefficient is found.Comment: 6 pages, 2 figure

    Nodeless superconductivity in the cage-type superconductor Sc5Ru6Sn18 with preserved time-reversal symmetry

    Full text link
    We report the single-crystal synthesis and detailed investigations of the cage-type superconductor Sc5Ru6Sn18, using powder x-ray diffraction (XRD), magnetization, specific-heat and muon-spin relaxation (muSR) measurements. Sc5Ru6Sn18 crystallizes in a tetragonal structure (space group I41/acd) with the lattice parameters a = 1.387(3) nm and c = 2.641(5) nm. Both DC and AC magnetization measurements prove the type-II superconductivity in Sc5Ru6Sn18 with Tc = 3.5(1) K, a lower critical field H_c1 (0) = 157(9) Oe and an upper critical field, H_c2 (0) = 26(1) kOe. The zero-field electronic specific-heat data are well fitted using a single-gap BCS model, with superconducting gap = 0.64(1) meV. The Sommerfeld constant varies linearly with the applied magnetic field, indicating s-wave superconductivity in Sc5Ru6Sn18. Specific-heat and transverse-field (TF) muSR measurements reveal that Sc5Ru6Sn18 is a superconductor with strong electron-phonon coupling, with TF-muSR also suggesting the single-gap s-wave character of the superconductivity. Furthermore, zero-field muSR measurements do not detect spontaneous magnetic fields below Tc, hence implying that time-reversal symmetry is preserved in Sc5Ru6Sn18.Comment: 23 pages, 11 figure

    GINZBURG-LANDAU THEORY OF VORTICES IN dd-WAVE SUPERCONDUCTORS

    Full text link
    Ginzburg-Landau theory is used to study the properties of single vortices and of the Abrikosov vortex lattice in a dx2y2d_{x^2-y^2} superconductor. For a single vortex, the ss-wave order parameter has the expected four-lobe structure in a ring around the core and falls off like 1/r21/r^2 at large distances. The topological structure of the ss-wave order parameter consists of one counter-rotating unit vortex, centered at the core, surrounded by four symmetrically placed positive unit vortices. The Abrikosov lattice is shown to have a triangular structure close to TcT_c and an oblique structure at lower temperatures. Comparison is made to recent neutron scattering data.Comment: 4 pages, REVTeX, 3 figures available upon reques

    Renormalization group study of the Kondo problem at a junction of several Luttinger wires

    Get PDF
    We study a system consisting of a junction of N quantum wires, where the junction is characterized by a scalar S-matrix, and an impurity spin is coupled to the electrons close to the junction. The wires are modeled as weakly interacting Tomonaga-Luttinger liquids. We derive the renormalization group equations for the Kondo couplings of the spin to the electronic modes on different wires, and analyze the renormalization group flows and fixed points for different values of the initial Kondo couplings and of the junction S-matrix (such as the decoupled S-matrix and the Griffiths S-matrix). We generally find that the Kondo couplings flow towards large and antiferromagnetic values in one of two possible ways. For the Griffiths S-matrix, we study one of the strong coupling flows by a perturbative expansion in the inverse of the Kondo coupling; we find that at large distances, the system approaches the ferromagnetic fixed point of the decoupled S-matrix. For the decoupled S-matrix with antiferromagnetic Kondo couplings and weak inter-electron interactions, the flows are to one of two strong coupling fixed points in which all the channels are strongly coupled to each other through the impurity spin. But strong inter-electron interactions, with K_\rho < N/(N+2), stabilize a multi-channel fixed point in which the coupling between different channels goes to zero. We have also studied the temperature dependence of the conductance at the decoupled and Griffiths S-matrices.Comment: Revtex4, 16 pages including 6 figure

    Observational Implications of Precessing Protostellar Discs and Jets

    Get PDF
    We consider the dynamics of a protostellar disc in a binary system where the disc is misaligned with the orbital plane of the binary, with the aim of determining the observational consequences for such systems. The disc wobbles with a period approximately equal to half the binary's orbital period and precesses on a longer timescale. We determine the characteristic timescale for realignment of the disc with the orbital plane due to dissipation. If the dissipation is determined by a simple isotropic viscosity then we find, in line with previous studies, that the alignment timescale is of order the viscous evolution timescale. However, for typical protostellar disc parameters, if the disc tilt exceeds the opening angle of the disc, then tidally induced shearing within the disc is transonic. In general, hydrodynamic instabilities associated with the internally driven shear result in extra dissipation which is expected to drastically reduce the alignment timescale. For large disc tilts the alignment timescale is then comparable to the precession timescale, while for smaller tilt angles δ\delta, the alignment timescale varies as (sinδ)1(\sin \delta)^{-1}. We discuss the consequences of the wobbling, precession and rapid realignment for observations of protostellar jets and the implications for binary star formation mechanisms.Comment: MNRAS, in press. 10 pages. Also available at http://www.ast.cam.ac.uk/~mbat

    SN 2015ba: A type IIP supernova with a long plateau

    Get PDF
    We present optical photometry and spectroscopy from about a week after explosion to \sim272 d of an atypical Type IIP supernova, SN 2015ba, which exploded in the edge-on galaxy IC 1029. SN 2015ba is a luminous event with an absolute V-band magnitude of -17.1±\pm0.2 mag at 50 d since explosion and has a long plateau lasting for \sim123 d. The distance to the SN is estimated to be 34.8±\pm0.7 Mpc using the expanding photosphere and standard candle methods. High-velocity H-Balmer components constant with time are observed in the late-plateau phase spectra of SN 2015ba, which suggests a possible role of circumstellar interaction at these phases. Both hydrodynamical and analytical modelling suggest a massive progenitor of SN 2015ba with a pre-explosion mass of 24-26 M_\odot. However, the nebular spectra of SN 2015ba exhibit insignificant levels of oxygen, which is otherwise expected from a massive progenitor. This might be suggestive of the non-monotonical link between O-core masses and the zero-age main-sequence mass of pre-supernova stars and/or uncertainties in the mixing scenario in the ejecta of supernovae.Comment: 42 pages, 7 pages Appendix, 20 figures, 10 tables, Accepted for publication in MNRAS, 14-June-201
    corecore