264,169 research outputs found
Giant Tunneling Magnetoresistance, Glassiness, and the Energy Landscape at Nanoscale Cluster Coexistence
We present microscopic results on the giant tunneling magnetoresistance that
arises from the nanoscale coexistence of ferromagnetic metallic (FMM) and
antiferromagnetic insulating (AFI) clusters in a disordered two dimensional
electron system with competing double exchange and superexchange interactions.
Our Monte Carlo study allows us to map out the different field regimes in
magnetotransport and correlate it with the evolution of spatial structures. At
coexistence, the isotropic O(3) model shows signs of slow relaxation, and has a
high density of low energy metastable states, but no genuine glassiness.
However, in the presence of weak magnetic anisotropy, and below a field
dependent irreversibility temperature , the response on field cooling
(FC) differs distinctly from that on zero field cooling (ZFC). We map out the
phase diagram of this `phase coexistence glass', highlight how its response
differs from that of a standard spin glass, and compare our results with data
on the manganites.Comment: Final published versio
Can re-entrance be observed in force induced transitions?
A large conformational change in the reaction co-ordinate and the role of the
solvent in the formation of base-pairing are combined to settle a long standing
issue {\it i.e.} prediction of re-entrance in the force induced transition of
DNA. A direct way to observe the re-entrance, i.e a strand goes to the closed
state from the open state and again to the open state with temperature, appears
difficult to be achieved in the laboratory. An experimental protocol (in direct
way) in the constant force ensemble is being proposed for the first time that
will enable the observation of the re-entrance behavior in the
force-temperature plane. Our exact results for small oligonucleotide that forms
a hairpin structure provide the evidence that re-entrance can be observed.Comment: 12 pages and 5 figures (RevTex4). Accepted in Europhys Lett. (2009
Comparative study of the phase of diurnal anisotropy on quiet and disturbed days on a long term basis up to recent period
The data from the world wide grid of neutron monitoring stations was analyzed for a comparative study of the phase of diurnal anisotropy on quiet and disturbed days on a long term basis up to recent period. It has been observed that the phase of the diurnal anisotropy on disturbed days where the value of the Ap-index is higher, is found to shift towards earlier hours in comparison to the phase of the diurnal anisotropy on quiet days where the value of Ap-index is lower on all the stations from 1965 to 71. Such a trend is not observable for the later period. This affect is found to be more pronounced on equatorial stations, in particular, in comparison to high latitude stations. It was derived from these observational facts that the relationship between Ap-index and the phase of the diurnal anisotropy is not invariant throughout the period of consideration. Furthermore, the exact cause of such a drastic change is not known, but it demonstrates very clearly that the interplanetary conditions which are responsible for both, diurnal anisotropy of cosmic ray intensity and the geomagnetic Ap-index variation, have drastically changed during the period 1971 and onwards
Quantum entanglement and Hawking temperature
The thermodynamic entropy of an isolated system is given by its von Neumann
entropy. Over the last few years, there is an intense activity to understand
thermodynamic entropy from the principles of quantum mechanics. More
specifically, is there a relation between the (von Neumann) entropy of
entanglement between a system and some (separate) environment is related to the
thermodynamic entropy? It is difficult to obtain the relation for many body
systems, hence, most of the work in the literature has focused on small number
systems. In this work, we consider black-holes --- that are simple yet
macroscopic systems --- and show that a direct connection could not be made
between the entropy of entanglement and the Hawking temperature. In this work,
within the adiabatic approximation, we explicitly show that the Hawking
temperature is indeed given by the rate of change of the entropy of
entanglement across a black hole's horizon with regard to the system energy.
This is yet another numerical evidence to understand the key features of black
hole thermodynamics from the viewpoint of quantum information theory.Comment: 10 pages, 5 figures (To appear in Eur. Phys. J. C
- …
