944 research outputs found

    Parent-offspring transmission of adipocytokine levels and their associations with metabolic traits

    Get PDF
    Adipose tissue secreted cytokines (adipocytokines) have significant effects on the physiology and pathology of human metabolism relevant to diabetes and cardiovascular disease. We determined the relationship of the pattern of these circulating hormones with obesity-related phenotypes and whether such pattern is transmitted from parent to offspring. A combined total of 403 individuals from 156 consenting Saudi families divided into initial (119 families with 123 adults and 131 children) and replication (37 families with 58 adults and 91 children) cohorts were randomly selected from the RIYADH Cohort study. Anthropometrics were evaluated and metabolic measures such as fasting serum glucose, lipid profiles, insulin, leptin, adiponectin, resistin, tumor necrosis factor alpha (TNFa), activated plasminogen activator inhibitor 1 (aPAI1), high sensitivity C-reactive protein (hsCRP) and angiotensin II were also assessed. Parent-offspring regressions revealed that with the exception of hsCRP, all hormones measured showed evidence for significant inheritance. Principal component (PC) analysis of standardized hormone levels demonstrated surprising heritability of the three most common axes of variation. PC1, which explained 21% of the variation, was most strongly loaded on levels of leptin, TNFa, insulin, and aPAI1, and inversely with adiponectin. It was significantly associated with body mass index (BMI) and phenotypically stronger in children, and showed a heritability of ,50%, after adjustment for age, gender and generational effects. We conclude that adipocytokines are highly heritable and their pattern of co-variation significantly influences BMI as early as the pre-teen years. Investigation at the genomic scale is required to determine the variants affecting the regulation of the hormones studied

    Changes in endotoxin levels in T2DM subjects on anti-diabetic therapies

    Get PDF
    Introduction Chronic low-grade inflammation is a significant factor in the development of obesity associated diabetes. This is supported by recent studies suggesting endotoxin, derived from gut flora, may be key to the development of inflammation by stimulating the secretion of an adverse cytokine profile from adipose tissue. Aims The study investigated the relationship between endotoxin and various metabolic parameters of diabetic patients to determine if anti-diabetic therapies exerted a significant effect on endotoxin levels and adipocytokine profiles. Methods Fasting blood samples were collected from consenting Saudi Arabian patients (BMI: 30.2 ± (SD)5.6 kg/m2, n = 413), consisting of non-diabetics (ND: n = 67) and T2DM subjects (n = 346). The diabetics were divided into 5 subgroups based on their 1 year treatment regimes: diet-controlled (n = 36), metformin (n = 141), rosiglitazone (RSG: n = 22), a combined fixed dose of metformin/rosiglitazone (met/RSG n = 100) and insulin (n = 47). Lipid profiles, fasting plasma glucose, insulin, adiponectin, resistin, TNF-α, leptin, C-reactive protein (CRP) and endotoxin concentrations were determined. Results Regression analyses revealed significant correlations between endotoxin levels and triglycerides (R2 = 0.42; p < 0.0001); total cholesterol (R2 = 0.10; p < 0.001), glucose (R2 = 0.076; p < 0.001) and insulin (R2 = 0.032; p < 0.001) in T2DM subjects. Endotoxin showed a strong inverse correlation with HDL-cholesterol (R2 = 0.055; p < 0.001). Further, endotoxin levels were elevated in all of the treated diabetic subgroups compared with ND, with the RSG treated diabetics showing significantly lower endotoxin levels than all of the other treatment groups (ND: 4.2 ± 1.7 EU/ml, RSG: 5.6 ± 2.2 EU/ml). Both the met/RSG and RSG treated groups had significantly higher adiponectin levels than all the other groups, with the RSG group expressing the highest levels overall. Conclusion We conclude that sub-clinical inflammation in T2DM may, in part, be mediated by circulating endotoxin. Furthermore, that whilst the endotoxin and adipocytokine profiles of diabetic patients treated with different therapies were comparable, the RSG group demonstrated significant differences in both adiponectin and endotoxin levels. We confirm an association between endotoxin and serum insulin and triglycerides and an inverse relationship with HDL. Lower endotoxin and higher adiponectin in the groups treated with RSG may be related and indicate another mechanism for the effect of RSG on insulin sensitivity

    Vitamin D supplementation as an adjuvant therapy for patients with T2DM : an 18-month prospective interventional study

    Get PDF
    Background Vitamin D deficiency has been associated with impaired human insulin action, suggesting a role in the pathogenesis of diabetes mellitus type 2 (T2DM). In this prospective interventional study we investigated the effects of vitamin D3 supplementation on the metabolic profiles of Saudi T2DM subjects pre- and post-vitamin D supplementation over an 18-month period. Methods T2DM Saudi subjects (men, N = 34: Age: 56.6 ± 8.7 yr, BMI, 29.1 ± 3.3 kg/m2; women, N = 58: Age: 51.2 ± 10.6 yr, BMI 34.3 ± 4.9 kg/m2;) were recruited and given 2000 IU vitamin D3 daily for 18 months. Anthropometrics and fasting blood were collected (0, 6, 12, 18 months) to monitor serum 25-hydroxyvitamin D using specific ELISA, and to determine metabolic profiles by standard methods. Results In all subjects there was a significant increase in mean 25-hydroxyvitamin D levels from baseline (32.2 ± 1.5 nmol/L) to 18 months (54.7 ± 1.5 nmol/L; p < 0.001), as well as serum calcium (baseline = 2.3 ± 0.23 mmol/L vs. 18 months = 2.6 ± 0.1 mmol/L; p = 0.003). A significant decrease in LDL- (baseline = 4.4 ± 0.8 mmol/L vs. 18 months = 3.6 ± 0.8 mmol/L, p < 0.001] and total cholesterol (baseline = 5.4 ± 0.2 mmol/L vs. 18 months = 4.9 ± 0.3 mmol/L, p < 0.001) were noted, as well as a significant improvement in HOMA-β function ( p = 0.002). Majority of the improvements elicited were more prominent in women than men. Conclusion In the Saudi T2DM population receiving oral Vitamin D3 supplementation (2000 IU/day), circulating 25-hydroxyvitamin D levels remained below normal 18 months after the onset of treatment. Yet, this “suboptimal” supplementation significantly improved lipid profile with a favorable change in HDL/LDL ratio, and HOMA-β function, which were more pronounced in T2DM females

    Therapeutic Potential of Citrulline as an Arginine Supplement: A Clinical Pharmacology Review

    Get PDF
    Supplemental arginine has shown promise as a safe therapeutic option to improve endogenous nitric oxide (NO) regulation in cardiovascular diseases associated with endothelial dysfunction. L-arginine, an endogenous amino acid, was reported in clinical studies in adults to improve cardiovascular function in hypertension, pulmonary hypertension, pre-eclampsia, angina, and mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome. L-citrulline, a natural precursor of L-arginine, is more bioavailable than L-arginine because of hepatic first-pass metabolism avoidance and longer circulation time. Although not yet well studied, arginine/citrulline has immense therapeutic potential in some life-threatening diseases of children. However, optimal clinical development of arginine or citrulline in children is dependent on more information about pharmacokinetics and exposure-response relationships at appropriate ages and under relevant disease states. This article summarizes the pre-clinical and clinical studies of arginine/citrulline in both adults and children, including currently available pharmacokinetic information. The pharmacology of arginine/citrulline is confounded by several patient-specific factors such as baseline variation of arginine/citrulline due to developmental ages and disease states. Currently available pharmacokinetic studies are not enough to inform the optimal design of clinical studies, especially those in children. Successful bench to bedside clinical translation of arginine supplementation awaits information from well-designed pharmacokinetic-pharmacodynamic studies, along with pharmacometric approaches

    Tea and coffee consumption in relation to vitamin D and calcium levels in Saudi adolescents

    Get PDF
    Background Coffee and tea consumption was hypothesized to interact with variants of vitamin D-receptor polymorphisms, but limited evidence exists. Here we determine for the first time whether increased coffee and tea consumption affects circulating levels of 25-hydroxyvitamin D in a cohort of Saudi adolescents. Methods A total of 330 randomly selected Saudi adolescents were included. Anthropometrics were recorded and fasting blood samples were analyzed for routine analysis of fasting glucose, lipid levels, calcium, albumin and phosphorous. Frequency of coffee and tea intake was noted. 25-hydroxyvitamin D levels were measured using enzyme-linked immunosorbent assays. Results Improved lipid profiles were observed in both boys and girls, as demonstrated by increased levels of HDL-cholesterol, even after controlling for age and BMI, among those consuming 9–12 cups of coffee/week. Vitamin D levels were significantly highest among those consuming 9–12 cups of tea/week in all subjects (p-value 0.009) independent of age, gender, BMI, physical activity and sun exposure. Conclusion This study suggests a link between tea consumption and vitamin D levels in a cohort of Saudi adolescents, independent of age, BMI, gender, physical activity and sun exposure. These findings should be confirmed prospectively

    Surface hydrophobics mediate functional dimerization of CYP121A1 of Mycobacterium tuberculosis

    Get PDF
    Tuberculosis is caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb) and remains the leading cause of death by infection world-wide. The Mtb genome encodes a disproportionate number of twenty cytochrome P450 enzymes, of which the essential enzyme cytochrome P450 121A1 (CYP121A1) remains a target of drug design efforts. CYP121A1 mediates a phenol coupling reaction of the tyrosine dipeptide cyclo-L-Tyr-L-Tyr (cYY). In this work, a structure and function investigation of dimerization was performed as an overlooked feature of CYP121A1 function. This investigation showed that CYP121A1 dimers form via intermolecular contacts on the distal surface and are mediated by a network of solvent-exposed hydrophobic residues. Disruption of CYP121A1 dimers by site-directed mutagenesis leads to a partial loss of specificity for cYY, resulting in an approximate 75% decrease in catalysis. 19F labeling and nuclear magnetic resonance of the enzyme FG-loop was also combined with protein docking to develop a working model of a functional CYP121A1 dimer. The results obtained suggest that participation of a homodimer interface in substrate selectivity represents a novel paradigm of substrate binding in CYPs, while also providing important mechanistic insight regarding a relevant drug target in the development of novel anti-tuberculosis agents

    Nationwide Molecular Surveillance of Pandemic H1N1 Influenza A Virus Genomes: Canada, 2009

    Get PDF
    BACKGROUND: In April 2009, a novel triple-reassortant swine influenza A H1N1 virus ("A/H1N1pdm"; also known as SOIV) was detected and spread globally as the first influenza pandemic of the 21(st) century. Sequencing has since been conducted at an unprecedented rate globally in order to monitor the diversification of this emergent virus and to track mutations that may affect virus behavior. METHODOLOGY/PRINCIPAL FINDINGS: By Sanger sequencing, we determined consensus whole-genome sequences for A/H1N1pdm viruses sampled nationwide in Canada over 33 weeks during the 2009 first and second pandemic waves. A total of 235 virus genomes sampled from unique subjects were analyzed, providing insight into the temporal and spatial trajectory of A/H1N1pdm lineages within Canada. Three clades (2, 3, and 7) were identifiable within the first two weeks of A/H1N1pdm appearance, with clades 5 and 6 appearing thereafter; further diversification was not apparent. Only two viral sites displayed evidence of adaptive evolution, located in hemagglutinin (HA) corresponding to D222 in the HA receptor-binding site, and to E374 at HA2-subunit position 47. Among the Canadian sampled viruses, we observed notable genetic diversity (1.47 x 10⁻³ amino acid substitutions per site) in the gene encoding PB1, particularly within the viral genomic RNA (vRNA)-binding domain (residues 493-757). This genome data set supports the conclusion that A/H1N1pdm is evolving but not excessively relative to other H1N1 influenza A viruses. Entropy analysis was used to investigate whether any mutated A/H1N1pdm protein residues were associated with infection severity; however no virus genotypes were observed to trend with infection severity. One virus that harboured heterozygote coding mutations, including PB2 D567D/G, was attributed to a severe and potentially mixed infection; yet the functional significance of this PB2 mutation remains unknown. CONCLUSIONS/SIGNIFICANCE: These findings contribute to enhanced understanding of Influenza A/H1N1pdm viral dynamics
    corecore