75,102 research outputs found

    Dynamic Normalization for Compact Binary Coalescence Searches in Non-Stationary Noise

    Get PDF
    The output of gravitational-wave interferometers, such as LIGO and Virgo, can be highly non-stationary. Broadband detector noise can affect the detector sensitivity on the order of tens of seconds. Gravitational-wave transient searches, such as those for colliding black holes, estimate this noise in order to identify gravitational-wave events. During times of non-stationarity we see a higher rate of false events being reported. To accurately separate signal from noise, it is imperative to incorporate the changing detector state into gravitational-wave searches. We develop a new statistic which estimates the variation of the interferometric detector noise. We use this statistic to re-rank candidate events identified during LIGO-Virgo's second observing run by the PyCBC search pipeline. This results in a 7% improvement in the sensitivity volume for low mass binaries, particularly binary neutron stars mergers

    Ultrafast photoinduced enhancement of nonlinear optical response in 15-atom gold clusters on indium tin oxide conducting film

    Full text link
    We show that the third order optical nonlinearity of 15-atom gold clusters is significantly enhanced when in contact with indium tin oxide (ITO) conducting film. Open and close aperture z-scan experiments together with non-degenerate pump-probe differential transmission experiments were done using 80 fs laser pulses centered at 395 nm and 790 nm on gold clusters encased inside cyclodextrin cavities. We show that two photon absorption coefficient is enhanced by an order of magnitude as compared to that when the clusters are on pristine glass plate. The enhancement for the nonlinear optical refraction coefficient is ~3 times. The photo-induced excited state absorption using pump-probe experiments at pump wavelength of 395 nm and probe at 790 nm also show an enhancement by an order of magnitude. These results attributed to the excited state energy transfer in the coupled gold cluster-ITO system are different from the enhancement seen so far in charge donor-acceptor complexes and nanoparticle-conjugate polymer composites.Comment: To appear in Optics Express (2013); http://dx.doi.org/10.1364/OE.21.00848

    Strings, Junctions and Stability

    Full text link
    Identification of string junction states of pure SU(2) Seiberg-Witten theory as B-branes wrapped on a Calabi-Yau manifold in the geometric engineering limit is discussed. The wrapped branes are known to correspond to objects in the bounded derived category of coherent sheaves on the projective line \cp{1} in this limit. We identify the pronged strings with triangles in the underlying triangulated category using Pi-stability. The spiral strings in the weak coupling region are interpreted as certain projective resolutions of the invertible sheaves. We discuss transitions between the spiral strings and junctions using the grade introduced for Pi-stability through the central charges of the corresponding objects.Comment: 15 pages, LaTeX; references added. typos correcte

    Neuromorphic In-Memory Computing Framework using Memtransistor Cross-bar based Support Vector Machines

    Full text link
    This paper presents a novel framework for designing support vector machines (SVMs), which does not impose restriction on the SVM kernel to be positive-definite and allows the user to define memory constraint in terms of fixed template vectors. This makes the framework scalable and enables its implementation for low-power, high-density and memory constrained embedded application. An efficient hardware implementation of the same is also discussed, which utilizes novel low power memtransistor based cross-bar architecture, and is robust to device mismatch and randomness. We used memtransistor measurement data, and showed that the designed SVMs can achieve classification accuracy comparable to traditional SVMs on both synthetic and real-world benchmark datasets. This framework would be beneficial for design of SVM based wake-up systems for internet of things (IoTs) and edge devices where memtransistors can be used to optimize system's energy-efficiency and perform in-memory matrix-vector multiplication (MVM).Comment: 4 pages, 5 figures, MWSCAS 201

    A rapidly expanding Bose-Einstein condensate: an expanding universe in the lab

    Full text link
    We study the dynamics of a supersonically expanding ring-shaped Bose-Einstein condensate both experimentally and theoretically. The expansion redshifts long-wavelength excitations, as in an expanding universe. After expansion, energy in the radial mode leads to the production of bulk topological excitations -- solitons and vortices -- driving the production of a large number of azimuthal phonons and, at late times, causing stochastic persistent currents. These complex nonlinear dynamics, fueled by the energy stored coherently in one mode, are reminiscent of a type of "preheating" that may have taken place at the end of inflation.Comment: 12 pages, 7 figure

    Duality, Marginal Perturbations and Gauging

    Full text link
    We study duality transformations for two-dimensional sigma models with abelian chiral isometries and prove that generic such transformations are equivalent to integrated marginal perturbations by bilinears in the chiral currents, thus confirming a recent conjecture by Hassan and Sen formulated in the context of Wess-Zumino-Witten models. Specific duality transformations instead give rise to coset models plus free bosons.Comment: 15 page

    Energy and momentum of Bianchi Type VI_h Universes

    Get PDF
    We obtain the energy and momentum of the Bianchi type VI_h universes using different prescriptions for the energy-momentum complexes in the framework of general relativity. The energy and momentum of the Bianchi VI_h universe are found to be zero for the parameter h = -1 of the metric. The vanishing of these results support the conjecture of Tryon that Universe must have a zero net value for all conserved quantities.This also supports the work of Nathan Rosen with the Robertson-Walker metric. Moreover, it raises an interesting question: "Why h=-1 case is so special?

    Self-similar collapse and the structure of dark matter halos: A fluid approach

    Full text link
    We explore the dynamical restrictions on the structure of dark matter halos through a study of cosmological self-similar gravitational collapse solutions. A fluid approach to the collisionless dynamics of dark matter is developed and the resulting closed set of moment equations are solved numerically including the effect of halo velocity dispersions (both radial and tangential), for a range of spherically averaged initial density profiles. Our results highlight the importance of tangential velocity dispersions to obtain density profiles shallower than 1/r21/r^2 in the core regions, and for retaining a memory of the initial density profile, in self-similar collapse. For an isotropic core velocity dispersion only a partial memory of the initial density profile is retained. If tangential velocity dispersions in the core are constrained to be less than the radial dispersion, a cuspy core density profile shallower than 1/r1/r cannot obtain, in self-similar collapse.Comment: 25 pages, 7 figures, submitted to Ap
    corecore