209 research outputs found

    Roles of Sema4D and Plexin-B1 in tumor progression

    Get PDF
    Sema4D, also known as CD100, is a protein belonging to class IV semaphorin. Its physiologic roles in the immune and nervous systems have been extensively explored. However, the roles of Sema4D have extended beyond these traditionally studied territories. Via interaction with its high affinity receptor Plexin-B1, Sema4D-Plexin-B1 involvement in tumor progression is strongly implied. Here, we critically review and delineate the Sema4D-Plexin-B1 interaction in many facets of tumor progression: tumor angiogenesis, regulation of tumor-associated macrophages and control of invasive growth. We correlate the in vitro and in vivo experimental data with the clinical study outcomes, and present a molecular mechanistic basis accounting for the intriguingly contradicting results from these recent studies

    Reduction in BDNF from inefficient precursor conversion influences nest building and promotes depressive-like behavior in mice

    Get PDF
    Kojima, M.; Otabi, H.; Kumanogoh, H.; Toyoda, A.; Ikawa, M.; Okabe, M.; Mizui, T. Reduction in BDNF from Inefficient Precursor Conversion Influences Nest Building and Promotes Depressive-Like Behavior in Mice. Int. J. Mol. Sci. 2020, 21, 3984. https://doi.org/10.3390/ijms2111398

    Control of Bone Resorption by Semaphorin 4D Is Dependent on Ovarian Function

    Get PDF
    Osteoporosis is one of the most common bone pathologies, which are characterized by a decrease in bone mass. It is well established that bone mass, which results from a balanced bone formation and bone resorption, is regulated by many hormonal, environmental and genetic factors. Here we report that the immune semaphorin 4D (Sema4D) is a novel factor controlling bone resorption. Sema4D-deficient primary osteoclasts showed impaired spreading, adhesion, migration and resorption due to altered ß3 integrin sub-unit downstream signaling. In apparent accordance with these in vitro results, Sema4D deletion in sexually mature female mice led to a high bone mass phenotype due to defective bone resorption by osteoclasts. Mutant males, however, displayed normal bone mass and the female osteopetrotic phenotype was only detected at the onset of sexual maturity, indicating that, in vivo, this intrinsic osteoclast defect might be overcome in these mice. Using bone marrow cross transplantation, we confirmed that Sema4D controls bone resorption through an indirect mechanism. In addition, we show that Sema4D −/− mice were less fertile than their WT littermates. A decrease in Gnrh1 hypothalamic expression and a reduced number of ovarian follicles can explain this attenuated fertility. Interestingly, ovariectomy abrogated the bone resorption phenotype in Sema4D −/− mice, providing the evidence that the observed high bone mass phenotype is strictly dependent on ovarian function. Altogether, this study reveals that, in vivo, Sema4D is an indirect regulator of bone resorption, which acts via its effect on reproductive function

    DNA Damage in Rheumatoid Arthritis: An Age-Dependent Increase in the Lipid Peroxidation-Derived DNA Adduct, Heptanone-Etheno-2′-Deoxycytidine

    Get PDF
    Objective. To evaluate what types of DNA damages are detected in rheumatoid arthritis (RA). Methods. The DNA adducts such as 8-oxo-hydroxy-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG), 1,N6-etheno-2′-deoxyadenosine (εdA), and heptanone-etheno-2′-deoxycytidine (HεdC) in genomic DNAs, derived from whole blood cells from 46 RA patients and 31 healthy controls, were analyzed by high-performance liquid chromatography tandem mass spectrometry, and their levels in RA patients and controls were compared. In addition, correlation between DNA adducts and clinical parameters of RA was analyzed. Results. Compared with controls, the levels of HεdC in RA were significantly higher (P<0.0001) and age dependent (r = 0.43, P < 0.01), while there was no significant difference in 8-oxo-dG and εdA accumulation between RA patients and controls. HεdC levels correlated well with the number of swollen joints (r = 0.57, P < 0.0001) and weakly with the number of tender joints (r = 0.26, P = 0.08) of RA patients, while they did not show a significant association with serological markers such as C-reactive protein and matrix metalloproteinase 3. Conclusion. These findings indicate that HεdC may have some influence on the development of RA and/or its complications

    Automatic evaluation of atlantoaxial subluxation in rheumatoid arthritis by a deep learning model

    Get PDF
    Background: This work aims to develop a deep learning model, assessing atlantoaxial subluxation (AAS) in rheumatoid arthritis (RA), which can often be ambiguous in clinical practice. Methods: We collected 4691 X-ray images of the cervical spine of the 906 patients with RA. Among these images, 3480 were used for training the deep learning model, 803 were used for validating the model during the training process, and the remaining 408 were used for testing the performance of the trained model. The two-dimensional key points’ detection model of Deep High-Resolution Representation Learning for Human Pose Estimation was adopted as the base convolutional neural network model. The model inferred four coordinates to calculate the atlantodental interval (ADI) and space available for the spinal cord (SAC). Finally, these values were compared with those by clinicians to evaluate the performance of the model. Results: Among the 408 cervical images for testing the performance, the trained model correctly identified the four coordinates in 99.5% of the dataset. The values of ADI and SAC were positively correlated among the model and two clinicians. The sensitivity of AAS diagnosis with ADI or SAC by the model was 0.86 and 0.97 respectively. The specificity of that was 0.57 and 0.5 respectively. Conclusions: We present the development of a deep learning model for the evaluation of cervical lesions of patients with RA. The model was demonstrably shown to be useful for quantitative evaluation.Okita Y., Hirano T., Wang B., et al. Automatic evaluation of atlantoaxial subluxation in rheumatoid arthritis by a deep learning model. Arthritis Research and Therapy 25, 181 (2023); 10.1186/s13075-023-03172-x

    Plexin A3 and plexin A4 convey semaphorin signals during facial nerve development

    Get PDF
    AbstractIn vertebrates, class 3 semaphorins (SEMA3) control axon behaviour by binding to neuronal cell surface receptors composed of a ligand binding subunit termed neuropilin (NRP) and a signal transduction subunit of the A-type plexin family (PLXNA). We have determined the requirement for SEMA3/NRP/PLXN signalling in the development of the facial nerve, which contains axons from two motor neuron populations, branchiomotor and visceromotor neurons. Loss of either SEMA3A/NRP1 or SEMA3F/NRP2 caused defasciculation and ectopic projection of facial branchiomotor axons. In contrast, facial visceromotor axons selectively required SEMA3A/NRP1. Thus, the greater superficial petrosal nerve was defasciculated, formed ectopic projections and failed to branch in its target area when either SEMA3A or NRP1 were lost. To examine which A-type plexin conveyed SEMA3/neuropilin signals during facial nerve development, we combined an expression analysis with loss of function studies. Even though all four A-type plexins were expressed in embryonic motor neurons, PLXNA1 and PLXNA2 were not essential for facial nerve development. In contrast, loss of PLXNA4 phenocopied the defects of SEMA3A and NRP1 mutants, and loss of PLXNA3 phenocopied the defects of SEMA3F and NRP2 mutants. The combined loss of PLXNA3 and PLXNA4 impaired facial branchiomotor axon guidance more severely than loss of either plexin alone, suggesting that SEMA3A and SEMA3F signals, even though both essential, are partially redundant

    BATF2 inhibits immunopathological Th17 responses by suppressing Il23a expression during Trypanosoma cruzi infection

    Get PDF
    Shoko Kitada, Hisako Kayama, Daisuke Okuzaki, Ritsuko Koga, Masao Kobayashi, Yasunobu Arima, Atsushi Kumanogoh, Masaaki Murakami, Masahito Ikawa, Kiyoshi Takeda; BATF2 inhibits immunopathological Th17 responses by suppressing Il23a expression during Trypanosoma cruzi infection. J Exp Med 1 May 2017; 214 (5): 1313–1331. doi: https://doi.org/10.1084/jem.2016107

    Radioligand Assay-Based Detection of Antibodies against SARS-CoV-2 in Hospital Workers Treating Patients with Severe COVID-19 in Japan.

    Get PDF
    This study aimed to clarify whether infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is prevalent among the staff of a hospital providing treatment to patients with severe coronavirus disease 2019 (COVID-19) using radioligand assay (RLA). One thousand samples from the staff of a general hospital providing treatment to patients with severe COVID-19 were assayed for SARS-CoV-2 nucleocapsid protein (N) IgG using RLA. Nine patients with COVID-19 who had been treated in inpatient settings and had already recovered were used as control subjects, and 186 blood donor samples obtained more than 10 years ago were used as negative controls. Four of the 1000 samples showed apparently positive results, and approximately 10 or more samples showed slightly high counts. Interestingly, a few among the blood donor samples also showed slightly high values. To validate the results, antibody examinations using ELISA and neutralizing antibody tests were performed on 21 samples, and chemiluminescence immunoassay (CLIA) was performed on 201 samples, both resulting in a very high correlation. One blood donor sample showed slightly positive results in both RLA and CLIA, suggesting a cross-reaction. This study showed that five months after the pandemic began in Japan, the staff of a general hospital with a tertiary emergency medical facility had an extremely low seroprevalence of the antibodies against SARS-CoV-2. Further investigation will be needed to determine whether the slightly high results were due to cross-reactions or a low titer of anti-SARS-CoV-2 antibodies. The quantitative RLA was considered sensitive enough to detect low titers of antibodies

    Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor-associated macrophages

    Get PDF
    Increased evidence suggests that cancer-associated inflammation supports tumor growth and progression. We have previously shown that semaphorin 4D (Sema4D), a ligand produced by different cell types, is a proangiogenic molecule that acts by binding to its receptor, plexin B1, expressed on endothelial cells (Conrotto, P., D. Valdembri, S. Corso, G. Serini, L. Tamagnone, P.M. Comoglio, F. Bussolino, and S. Giordano. 2005. Blood. 105:4321–4329). The present work highlights the role of Sema4D produced by the tumor microenvironment on neoplastic angiogenesis. We show that in an environment lacking Sema4D, the ability of cancer cells to generate tumor masses and metastases is severely impaired. This condition can be explained by a defective vascularization inside the tumor. We demonstrate that tumor-associated macrophages (TAMs) are the main cells producing Sema4D within the tumor stroma and that their ability to produce Sema4D is critical for tumor angiogenesis and vessel maturation. This study helps to explain the protumoral role of inflammatory cells of the tumor stroma and leads to the identification of an angiogenic molecule that might be a novel therapeutic target
    corecore