367 research outputs found

    Parametrization of nuclear parton distributions

    Full text link
    Optimum nuclear parton distributions are obtained by analyzing available experimental data on electron and muon deep inelastic scattering (DIS). The distributions are given at Q^2=1 GeV^2 with a number of parameters, which are determined by a chi^2 analysis of the data. Valence-quark distributions are relatively well determined at medium x, but they are slightly dependent on the assumed parametrization form particularly at small x. Although antiquark distributions are shadowed at small x, their behavior is not obvious at medium x from the F_2 data. The gluon distributions could not be restricted well by the inclusive DIS data; however, the analysis tends to support the gluon shadowing at small x. We provide analytical expressions and computer subroutines for calculating the nuclear parton distributions, so that other researchers could use them for applications to other high-energy nuclear reactions.Comment: 1+11 pages, LaTeX, amsmath.sty, wrapfig.sty, graphicx.sty, ias.cls, ias.sty, pramana.sty, pmana10.sty, pbib.sty, times.sty, 9 eps figures. Invited talk given at the International Symposium on Nuclear Physics, Mumbai, India, Dec. 18-22, 2000, to be published in proceedings. Complete postscript file is available at http://www-hs.phys.saga-u.ac.jp Email: [email protected], [email protected], [email protected]

    Determination of nuclear parton distributions

    Get PDF
    Parametrization of nuclear parton distributions is investigated in the leading order of alpha_s. The parton distributions are provided at Q^2=1 GeV^2 with a number of parameters, which are determined by a chi^2 analysis of the data on nuclear structure functions. Quadratic or cubic functional form is assumed for the initial distributions. Although valence quark distributions in the medium x region are relatively well determined, the small x distributions depend slightly on the assumed functional form. It is difficult to determine the antiquark distributions at medium x and gluon distributions. From the analysis, we propose parton distributions at Q^2=1 GeV^2 for nuclei from deuteron to heavy ones with the mass number A~208. They are provided either analytical expressions or computer subroutines for practical usage. Our studies should be important for understanding the physics mechanism of the nuclear modification and also for applications to heavy-ion reactions. This kind of nuclear parametrization should also affect existing parametrization studies in the nucleon because "nuclear" data are partially used for obtaining the optimum distributions in the "nucleon".Comment: 16 pages, REVTeX4b5, revtex4.cls, url.sty, natbib.sty, 10pt.rtx, aps.rtx, revsymb.sty, 21 eps figures. Submitted for publication. Computer codes for the nuclear parton distributions could be obtained from http://www-hs.phys.saga-u.ac.jp Email: [email protected]

    Anomalous dip observed in intensity autocorrelation function as an inherent nature of single-photon emitters

    Get PDF
    We report the observation of an anomalous antibunching dip in intensity autocorrelation function with photon correlation measurements on a single-photon emitter (SPE). We show that the anomalous dip observed is a manifestation of quantum nature of SPEs. Taking population dynamics in a quantum two-level system into account correctly, we redefine intensity autocorrelation function. This is of primary importance for precisely evaluating the lowest-level probability of multiphoton generation in SPEs toward realizing versatile pure SPEs for quantum information and communication.Comment: 10 pages including 3 figire

    Do we expect light flavor sea-quark asymmetry also for the spin-dependent distribution functions of the nucleon?

    Get PDF
    After taking account of the scale dependence by means of the standard DGLAP evolution equation, the theoretical predictions of the chiral quark soliton model for the unpolarized and longitudinally polarized structure functions of the nucleon are compared with the recent high energy data. The theory is shown to explain all the qualitative features of the experiments, including the NMC data for F2p(x)F2n(x)F_2^p (x) - F_2^n (x), F2n(x)/F2p(x)F_2^n (x) / F_2^p (x), the Hermes and NuSea data for dˉ(x)uˉ(x)\bar{d}(x) - \bar{u}(x), the EMC and SMC data for g1p(x)g_1^p(x), g1n(x)g_1^n(x) and g1d(x)g_1^d(x). Among others, flavor asymmetry of the longitudinally polarized sea-quark distributions is a remarkable prediction of this model, i.e., it predicts that Δdˉ(x)Δuˉ(x)=Cxα[dˉ(x)uˉ(x)]\Delta \bar{d}(x) - \Delta \bar{u}(x) = C x^{\alpha} [ \bar{d}(x) - \bar{u}(x)] with a sizable negative coefficient C2.0C \simeq -2.0 (and α0.12\alpha \simeq 0.12) in qualitative consistency with the recent semi-phenomenological analysis by Morii and Yamanishi.Comment: 14pages, including 5 eps_figures with epsbox.sty, late

    A Cooper pair light emitting diode

    Get PDF
    We demonstrate Cooper-pair's drastic enhancement effect on band-to-band radiative recombination in a semiconductor. Electron Cooper pairs injected from a superconducting electrode into an active layer by the proximity effect recombine with holes injected from a p-type electrode and dramatically accelerate the photon generation rates of a light emitting diode in the optical-fiber communication band. Cooper pairs are the condensation of electrons at a spin-singlet quantum state and this condensation leads to the observed enhancement of the electric-dipole transitions. Our results indicate the possibility to open up new interdisciplinary fields between superconductivity and optoelectronics.Comment: 5 pages (4 figures

    Two-photon interference and coherent control of single InAs quantum dot emissions in an Ag-embedded structure

    Get PDF
    We have recently reported the successful fabrication of bright single-photon sources based on Ag-embedded nanocone structures that incorporate InAs quantum dots. The source had a photon collection efficiency as high as 24.6%. Here we show the results of various types of photonic characterizations of the Ag-embedded nanocone structures that confirm their versatility as regards a broad range of quantum optical applications. We measure the first-order autocorrelation function to evaluate the coherence time of emitted photons, and the second-order correlation function, which reveals the strong suppression of multiple photon generation. The high indistinguishability of emitted photons is shown by the Hong-Ou-Mandel-type two-photon interference. With quasi-resonant excitation, coherent population flopping is demonstrated through Rabi oscillations. Extremely high single-photon purity with a g(2)g^{(2)}(0) value of 0.008 is achieved with π\pi-pulse quasi-resonant excitation.Comment: 15 pages, 6 figure

    Seven Kinds of Intermediate Filament Networks in the Cytoplasm of Polarized Cells: Structure and Function

    Get PDF
    Intermediate filaments (IFs) are involved in many important physiological functions, such as the distribution of organelles, signal transduction, cell polarity and gene regulation. However, little information exists on the structure of the IF networks performing these functions. We have clarified the existence of seven kinds of IF networks in the cytoplasm of diverse polarized cells: an apex network just under the terminal web, a peripheral network lying just beneath the cell membrane, a granule-associated network surrounding a mass of secretory granules, a Golgi-associated network surrounding the Golgi apparatus, a radial network locating from the perinuclear region to the specific area of the cell membrane, a juxtanuclear network surrounding the nucleus, and an entire cytoplasmic network. In this review, we describe these seven kinds of IF networks and discuss their biological roles

    Chiral Symmetry and the Nucleon Structure Functions

    Get PDF
    The isospin asymmetry of the sea quark distribution as well as the unexpectedly small quark spin fraction of the nucleon are two outstanding discoveries recently made in the physics of deep-inelastic structure functions. We evaluate here the corresponding quark distribution functions within the framework of the chiral quark soliton model, which is an effective quark model of baryons maximally incorporating the most important feature of low energy QCD, i.e. the chiral symmetry and its spontaneous breakdown. It is shown that the model can explain qualitative features of the above-mentioned nucleon structure functions within a single framework, thereby disclosing the importance of chiral symmetry in the physics of high energy deep-inelastic scatterings.Comment: 20pages, LaTex, 5 Postscript figures A numerical error of the original version was corrected. The discussion on the regularization dependence of distribution functions has been added. A comparison with the low energy-scale parametrization of Gloeck, Reya and Vogt has been mad
    corecore