460 research outputs found

    Search for Intrinsic Excitations in 152Sm

    Full text link
    The 685 keV excitation energy of the first excited 0+ state in 152Sm makes it an attractive candidate to explore expected two-phonon excitations at low energy. Multiple-step Coulomb excitation and inelastic neutron scattering studies of 152Sm are used to probe the E2 collectivity of excited 0+ states in this "soft" nucleus and the results are compared with model predictions. No candidates for two-phonon K=0+ quadrupole vibrational states are found. A 2+, K=2 state with strong E2 decay to the first excited K=0+ band and a probable 3+ band member are established.Comment: 4 pages, 6 figures, accepted for publication as a Rapid Communication in Physical Review

    Effects of partially dismantling the CD4 binding site glycan fence of HIV-1 envelope glycoprotein trimers on neutralizing antibody induction

    Get PDF
    Previously, VLPs bearing JR-FL strain HIV-1 Envelope trimers elicited potent neutralizing antibodies (nAbs) in 2/8 rabbits PLoS Pathog 11(5): e1004932) by taking advantage of a naturally absent glycan at position 197 that borders the CD4 binding site (CD4bs). In new immunizations, we attempted to improve nAb responses by removing the N362 glycan that also lines the CD4bs. All 4 rabbits developed nAbs. One targeted the N197 glycan hole like our previous sera. Two sera depended on the N463 glycan, again suggesting CD4bs overlap. Heterologous boosts appeared to reduce nAb clashes with the N362 glycan. The fourth serum targeted a N362 glycan-sensitive epitope. VLP manufacture challenges prevented us from immunizing larger rabbit numbers to empower a robust statistical analysis. Nevertheless, trends suggest that targeted glycan removal may improve nAb induction by exposing new epitopes and that it may be possible to modify nAb speciUcity using rational heterologous boosts

    High precision branching ratio measurement for the superallowed Ī² decay of [Formula Presented] A prerequisite for exacting tests of the standard model

    Get PDF
    Nonanalog Fermi and Gamow-Teller branches in the superallowed Ī² decay of [Formula Presented] have been investigated using Ī³-ray and conversion-electron spectroscopy. Nine observed transitions, in conjunction with a recent shell model calculation, determine the branching ratio of the analog transition to be 99.5(1)%. The experimental upper limits for the Fermi decay to the [Formula Presented] and [Formula Presented] levels are in agreement with recent theoretical predictions. The [Formula Presented] value for the [Formula Presented] Ī² decay is predicted to be 10405(9) keV. Ā© 2003 The American Physical Society

    Immunization for HIV-1 Broadly Neutralizing Antibodies in Human Ig Knockin Mice

    Get PDF
    A subset of individuals infected with HIV-1 develops broadly neutralizing antibodies (bNAbs) that can prevent infection, but it has not yet been possible to elicit these antibodies by immunization. To systematically explore how immunization might be tailored to produce them, we generated mice expressing the predicted germline or mature heavy chains of a potent bNAb to the CD4 binding site (CD4bs) on the HIV-1 envelope glycoprotein (Env). Immunogens specifically designed to activate B cells bearing germline antibodies are required to initiate immune responses, but they do not elicit bNAbs. In contrast, native-like Env trimers fail to activate B cells expressing germline antibodies but elicit bNAbs by selecting for a restricted group of light chains bearing specific somatic mutations that enhance neutralizing activity. The data suggest that vaccination to elicit anti-HIV-1 antibodies will require immunization with a succession of related immunogens

    Propionate and butyrate dependent bacterial sulfate reduction at extremely haloalkaline conditions and description of Desulfobotulus alkaliphilus sp. nov.

    Get PDF
    Evidence on the utilization of simple fatty acids by sulfate-reducing bacteria (SRB) at extremely haloalkaline conditions are practically absent, except for a single case of syntrophy by Desulfonatronum on acetate. Our experiments with sediments from soda lakes of Kulunda Steppe (Altai, Russia) showed sulfide production with sulfate as electron acceptor and propionate and butyrate (but not acetate) as an electron donor at a pH 10ā€“10.5 and a salinity 70ā€“180Ā gĀ lāˆ’1. With propionate as substrate, a highly enriched sulfidogenic culture was obtained in which the main component was identified as a novel representative of the family Syntrophobacteraceae. With butyrate as substrate, a pure SRB culture was isolated which oxidized butyrate and some higher fatty acids incompletely to acetate. The strain represents the first haloalkaliphilic representative of the family Desulfobacteraceae and is described as Desulfobotulus alkaliphilus sp. nov

    Using Stochastic Causal Trees to Augment Bayesian Networks for Modeling eQTL Datasets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The combination of genotypic and genome-wide expression data arising from segregating populations offers an unprecedented opportunity to model and dissect complex phenotypes. The immense potential offered by these data derives from the fact that genotypic variation is the sole source of perturbation and can therefore be used to reconcile changes in gene expression programs with the parental genotypes. To date, several methodologies have been developed for modeling eQTL data. These methods generally leverage genotypic data to resolve causal relationships among gene pairs implicated as associates in the expression data. In particular, leading studies have augmented Bayesian networks with genotypic data, providing a powerful framework for learning and modeling causal relationships. While these initial efforts have provided promising results, one major drawback associated with these methods is that they are generally limited to resolving causal orderings for transcripts most proximal to the genomic loci. In this manuscript, we present a probabilistic method capable of learning the causal relationships between transcripts at all levels in the network. We use the information provided by our method as a prior for Bayesian network structure learning, resulting in enhanced performance for gene network reconstruction.</p> <p>Results</p> <p>Using established protocols to synthesize eQTL networks and corresponding data, we show that our method achieves improved performance over existing leading methods. For the goal of gene network reconstruction, our method achieves improvements in recall ranging from 20% to 90% across a broad range of precision levels and for datasets of varying sample sizes. Additionally, we show that the learned networks can be utilized for expression quantitative trait loci mapping, resulting in upwards of 10-fold increases in recall over traditional univariate mapping.</p> <p>Conclusions</p> <p>Using the information from our method as a prior for Bayesian network structure learning yields large improvements in accuracy for the tasks of gene network reconstruction and expression quantitative trait loci mapping. In particular, our method is effective for establishing causal relationships between transcripts located both proximally and distally from genomic loci.</p

    Gamma-ray spectroscopy at TRIUMF-ISAC: The new frontier of radioactive ion beam research

    Get PDF
    High-resolution gamma-ray spectroscopy is essential to fully exploit the unique scientific opportunities at the next generation radioactive ion beam facilities such as the TRTUMF Isotope Separator and Accelerator (TSAC). At IS AC the 871 spectrometer and its associated auxiliary detectors is optimize for p-decay studies while TIGRESS an array of segmented clover HPGe detectors has been designed for studies with accelerated beams. This paper gives a brief overview of these facilities and also presents recent examples of the diverse experimental program carried out at the STI spectrometer. Ā© 2009 American Institute of Physics
    • ā€¦
    corecore