21 research outputs found

    PCR-DGGE assessment of the bacterial diversity of breast milk in women with lactational infectious mastitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infectious mastitis is a common condition during lactation and in fact, represents one of the main causes leading to a precocious weaning. The number of studies dealing with lactational mastitis is low and, up to now, the etiological diagnosis is frequently made on the basis of unspecific clinical signs. The aim of this study was to investigate the microbial diversity of breast milk in 20 women with lactational mastitis employing culture-dependent and culture-independent (PCR-DGGE) approaches.</p> <p>Methods</p> <p>Breast milk samples were cultured in different media to investigate the presence of bacteria and/or yeasts, and a total of 149 representative isolates were identified to the species level by 16S rRNA gene PCR sequencing. The microorganisms recovered were compared with those found by PCR-DGGE analysis. To identify the DGGE profiles two reference markers of different microbial species were constructed. Sequence analysis of unknown bands was also performed.</p> <p>Results</p> <p>Staphylococci were the dominant bacterial group and <it>Staphylococcus epidermidis </it>was the dominant species. In a lower number of samples, other bacteria (mainly streptococci and a few gram-negative species) were also identified. Globally, PCR-DGGE results showed a good correlation with those obtained by culture-based methods. However, although DNA bands corresponding to different lactic acid bacteria were detected, such bacteria could not be isolated from the milk samples.</p> <p>Conclusion</p> <p>Staphylococci seem to be the main etiological agents of human lactational mastitis. The combined use of culture and molecular techniques allowed a better characterization of the bacterial diversity in milk from women suffering from infectious mastitis. Our results suggest that this condition could be the result of a disbiotic process where some of the bacterial species usually present in human milk outgrow (staphylococci) while others disappear (lactobacilli or lactococci).</p

    Dietary Re-education, Exercise Program, Performance and Body Indexes Associated with Risk Factors in Overweight/Obese Women

    Get PDF
    This study observed the effect of a dietary re-education plus regular physical activity on body composition, risk factors and physical test performance of sedentary overweight/obese women and to correlate these variables one with each other. Fifty women (36 ± 10 yrs; 31 ± 6 body mass index (BMI, kg/m2)) volunteered for the study. Body compositions were obtained by anthropometry and bioimpedance and some body indexes were established. One-repetition maximum (1-RM) and treadmill VO2max tests were carried out and blood samples were obtained for lipid, glucose and uric acid analyses before (T1) and after two months of intervention (T2). Diet was established by indirect calorimetry. Body fat, glucose, uric acid, total cholesterol, HDL-cholesterol and systolic blood pressure were significantly reduced. The 1-RM and VO2max tests were significantly increased. Neck circumference (NC) was correlated with body composition, back muscle 1-MR, HDL and LDL cholesterol, total cholesterol/HDL ratio, uric acid, and resting energy expenditure. BMI was found to be significantly correlated with waist/hip ratio, circumference sum, and body fat percentage by anthropometry and bioimpedance. Body fat percentage determined by bioimpedance and anthropometry was significantly correlated with arm fat area and arm fat area corrected respectively, and both with BMI at T1 and T2. This study suggests that a dietary reeducation plus physical activity around 200 min/week improved body composition and the health of these women. Many anthropometry measurements have correspondence to risk factors and NC could be a simple approach to reflect these results, without other more complex techniques

    Complete Sequencing and Pan-Genomic Analysis of Lactobacillus delbrueckii subsp. bulgaricus Reveal Its Genetic Basis for Industrial Yogurt Production

    Get PDF
    Lactobacillus delbrueckii subsp. bulgaricus (Lb. bulgaricus) is an important species of Lactic Acid Bacteria (LAB) used for cheese and yogurt fermentation. The genome of Lb. bulgaricus 2038, an industrial strain mainly used for yogurt production, was completely sequenced and compared against the other two ATCC collection strains of the same subspecies. Specific physiological properties of strain 2038, such as lysine biosynthesis, formate production, aspartate-related carbon-skeleton intermediate metabolism, unique EPS synthesis and efficient DNA restriction/modification systems, are all different from those of the collection strains that might benefit the industrial production of yogurt. Other common features shared by Lb. bulgaricus strains, such as efficient protocooperation with Streptococcus thermophilus and lactate production as well as well-equipped stress tolerance mechanisms may account for it being selected originally for yogurt fermentation industry. Multiple lines of evidence suggested that Lb. bulgaricus 2038 was genetically closer to the common ancestor of the subspecies than the other two sequenced collection strains, probably due to a strict industrial maintenance process for strain 2038 that might have halted its genome decay and sustained a gene network suitable for large scale yogurt production

    Geomagnetic disturbances may be environmental risk factor for multiple sclerosis: an ecological study of 111 locations in 24 countries

    Full text link

    International Society of Sports Nutrition Position Stand: Probiotics.

    Get PDF
    Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: 1)Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO).2)Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications.3)Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent.4)Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown.5)The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components.6)Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes' exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections.7)Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes.8)Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise.9)The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product's shelf life, as measured by colony forming units (CFU) or live cells.10)Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population

    A Two-Component Regulatory System Controls Autoregulated Serpin Expression in Bifidobacterium breve UCC2003

    No full text
    This work reports on the identification and molecular characterization of a two-component regulatory system (2CRS), encoded by serRK, which is believed to control the expression of the ser(2003) locus in Bifidobacterium breve UCC2003. The ser(2003) locus consists of two genes, Bbr_1319 (sagA) and Bbr_1320 (serU), which are predicted to encode a hypothetical membrane-associated protein and a serpin-like protein, respectively. The response regulator SerR was shown to bind to the promoter region of ser(2003), and the probable recognition sequence of SerR was determined by a combinatorial approach of in vitro site-directed mutagenesis coupled to transcriptional fusion and electrophoretic mobility shift assays (EMSAs). The importance of the serRK 2CRS in the response of B. breve to protease-mediated induction was confirmed by generating a B. breve serR insertion mutant, which was shown to exhibit altered ser(2003) transcriptional induction patterns compared to the parent strain, UCC2003. Interestingly, the analysis of a B. breve serU mutant revealed that the SerRK signaling pathway appears to include a SerU-dependent autoregulatory loop
    corecore