18 research outputs found

    Lead Slowing-Down Spectrometry Time Spectral Analysis for Spent Fuel Assay: FY11 Status Report

    Get PDF
    Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration, of which PNNL is a part, to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10% typical of today's confirmatory assay methods. This document is a progress report for FY2011 PNNL analysis and algorithm development. Progress made by PNNL in FY2011 continues to indicate the promise of LSDS analysis and algorithms applied to used fuel. PNNL developed an empirical model based on calibration of the LSDS to responses generated from well-characterized used fuel. The empirical model, which accounts for self-shielding effects using empirical basis vectors calculated from the singular value decomposition (SVD) of a matrix containing the true self-shielding functions of the used fuel assembly models. The potential for the direct and independent assay of the sum of the masses of 239Pu and 241Pu to within approximately 3% over a wide used fuel parameter space was demonstrated. Also, in FY2011, PNNL continued to develop an analytical model. Such efforts included the addition of six more non-fissile absorbers in the analytical shielding function and the non-uniformity of the neutron flux across the LSDS assay chamber. A hybrid analytical-empirical approach was developed to determine the mass of total Pu (sum of the masses of 239Pu, 240Pu, and 241Pu), which is an important quantity in safeguards. Results using this hybrid method were of approximately the same accuracy as the pure empirical approach. In addition, total Pu with much better accuracy with the hybrid approach than the pure analytical approach. In FY2012, PNNL will continue efforts to optimize its empirical model and minimize its reliance on calibration data. In addition, PNNL will continue to develop an analytical model, considering effects such as neutron-scattering in the fuel and cladding, as well as neutrons streaming through gaps between fuel pins in the fuel assembly

    Lead Slowing Down Spectrometer Status Report

    Full text link
    This report documents the progress that has been completed in the first half of FY2012 in the MPACT-funded Lead Slowing Down Spectrometer project. Significant progress has been made on the algorithm development. We have an improve understanding of the experimental responses in LSDS for fuel-related material. The calibration of the ultra-depleted uranium foils was completed, but the results are inconsistent from measurement to measurement. Future work includes developing a conceptual model of an LSDS system to assay plutonium in used fuel, improving agreement between simulations and measurement, design of a thorium fission chamber, and evaluation of additional detector techniques

    Lead Slowing-Down Spectrometry for Spent Fuel Assay: FY11 Status Report

    Get PDF
    Executive Summary Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10% typical of today’s confirmatory assay methods. This document is a progress report for FY2011 collaboration activities. Progress made by the collaboration in FY2011 continues to indicate the promise of LSDS techniques applied to used fuel. PNNL developed an empirical model based on calibration of the LSDS to responses generated from well-characterized used fuel. The empirical model demonstrated the potential for the direct and independent assay of the sum of the masses of 239Pu and 241Pu to within approximately 3% over a wide used fuel parameter space. Similar results were obtained using a perturbation approach developed by LANL. Benchmark measurements have been successfully conducted at LANL and at RPI using their respective LSDS instruments. The ISU and UNLV collaborative effort is focused on the fabrication and testing of prototype fission chambers lined with ultra-depleted 238U and 232Th, and uranium deposition on a stainless steel disc using spiked U3O8 from room temperature ionic liquid was successful, with improving thickness obtained. In FY2012, the collaboration plans a broad array of activities. PNNL will focus on optimizing its empirical model and minimizing its reliance on calibration data, as well continuing efforts on developing an analytical model. Additional measurements are planned at LANL and RPI. LANL measurements will include a Pu sample, which is expected to provide more counts at longer slowing-down times to help identify discrepancies between experimental data and MCNPX simulations. RPI measurements will include the assay of an entire fresh fuel assembly for the study of self-shielding effects as well as the ability to detect diversion by detecting a missing fuel pin in the fuel assembly. The development of threshold neutron sensors will continue, and UNLV will calibrate existing ultra-depleted uranium deposits at ISU

    Application of Unconventional Materials on Primary Structural Parts of Machine Tools

    No full text
    The paper is mainly focused on possible domains of application of composite sandwich materials in the field of machine tools. A theoretical case study analyzing the effect of application of composite sandwich materials on the dynamics of the X-feed-drive axis of the horizontal milling machine is presented. The benefits of composite sandwich materials are discussed and summarized in the context of modern machine tools and their desired static and dynamic properties. Experimental case study is also presented
    corecore