975 research outputs found

    Entanglement between charge qubit states and coherent states of nanomechanical resonator generated by ac Josephson effect

    Get PDF
    We considered a nanoelectromechanical system consisting of a movable Cooper-pair box qubit, which is subject to an electrostatic field, and coupled to the two bulk superconductors via tunneling processes. We suggest that qubit dynamics is related to that of a quantum oscillator and demonstrate that a bias voltage applied between superconductors generates states represented by the entanglement of qubit states and coherent states of the oscillator if certain resonant conditions are fulfilled. It is shown that a structure of this entanglement may be controlled by the bias voltage in a way that gives rise to the entanglement incorporating so-called cat-states—the superposition of coherent states. We characterize the formation and development of such states analyzing the entropy of entanglement and corresponding Wigner function. The experimentally feasible detection of the effect by measuring the average current is also considered

    Umklapp-Assisted Electron Transport Oscillations in Metal Superlattices

    Get PDF
    We consider a superlattice of parallel metal tunnel junctions with a spatially non-homogeneous probability for electrons to tunnel. In such structures tunneling can be accompanied by electron scattering that conserves energy but not momentum. In the special case of a tunneling probability that varies periodically with period aa in the longitudinal direction, i.e., perpendicular to the junctions, electron tunneling is accompanied by "umklapp" scattering, where the longitudinal momentum changes by a multiple of h/ah/a. We predict that as a result a sequence of metal-insulator transitions can be induced by an external electric- or magnetic field as the field strength is increased.Comment: 5 pages, 3 figure

    Цивільно-правове регулювання конфіденційної інформації

    Get PDF
    Кулініч О. О. Цивільно-правове регулювання конфіденційної інформації / О. О. Кулініч // Актуальні проблеми держави і права : зб. наук. пр. / редкол.: С. В. Ківалов (голов. ред.), Ю. М. Оборотов (заст. голов. ред.), Л. Р. Біла (відп. секр.) [та ін.] ; ОНЮА. – Одеса : Юрид. л-ра, 2005. – Вип. 25. – С. 257-260

    Joule Heating and Current-Induced Instabilities in Magnetic Nanocontacts

    Full text link
    We consider the electrical current through a magnetic point contact in the limit of a strong inelastic scattering of electrons. In this limit local Joule heating of the contact region plays a decisive role in determining the transport properties of the point contact. We show that if an applied constant bias voltage exceeds a critical value, the stationary state of the system is unstable, and that periodic, non-harmonic oscillations in time of both the electrical current through the contact and the local temperature in the contact region develop spontaneously. Our estimations show that the necessary experimental conditions for observing such oscillations with characteristic frequencies in the range 108÷10910^8 \div 10^9 Hz can easily be met. We also show a possibility to manipulate upon the magnetization direction of a magnetic grain coupled through a point contact to a bulk ferromagnetic by exciting the above-mentioned thermal-electric oscillations.Comment: 9 pages, 6 figures, submitted to Physical Review

    Nanomechanics of a magnetic shuttle device

    Get PDF
    We show that self sustained mechanical vibrations in a model magnetic shuttle device can be driven by both the charge and the spin accumulated on the movable central island of the device. Different scenarios for how spin- and charge-induced shuttle instabilities may develop are discussed and shown to depend on whether there is a Coulomb blockade of tunneling or not. The crucial role of electronic spin flips in a magnetically driven shuttle is established and shown to cause giant magnetoresistance and dynamic magnetostriction effects

    Large-scale structure formation in cosmology with classical and tachyonic scalar fields

    Full text link
    The evolution of scalar perturbations is studied for 2-component (non-relativistic matter and dark energy) cosmological models at the linear and non-linear stages. The dark energy is assumed to be the scalar field with either classical or tachyonic Lagrangian and constant equation-of-state parameter w. The fields and potentials were reconstructed for the set of cosmological parameters derived from observations. The comparison of the calculated within these models and experimental large-scale structure characteristics is made. It is shown that for w=const such analysis can't remove the existing degeneracy of the dark energy models.Comment: 15 pages, 5 figures, text corrected, references added, accepted by Kinematics and Physics of Celestial Bodie

    Homotopy types of stabilizers and orbits of Morse functions on surfaces

    Full text link
    Let MM be a smooth compact surface, orientable or not, with boundary or without it, PP either the real line R1R^1 or the circle S1S^1, and Diff(M)Diff(M) the group of diffeomorphisms of MM acting on C(M,P)C^{\infty}(M,P) by the rule hffh1h\cdot f\mapsto f \circ h^{-1}, where hDiff(M)h\in Diff(M) and fC(M,P)f \in C^{\infty}(M,P). Let f:MPf:M \to P be a Morse function and O(f)O(f) be the orbit of ff under this action. We prove that πkO(f)=πkM\pi_k O(f)=\pi_k M for k3k\geq 3, and π2O(f)=0\pi_2 O(f)=0 except for few cases. In particular, O(f)O(f) is aspherical, provided so is MM. Moreover, π1O(f)\pi_1 O(f) is an extension of a finitely generated free abelian group with a (finite) subgroup of the group of automorphisms of the Reeb graph of ff. We also give a complete proof of the fact that the orbit O(f)O(f) is tame Frechet submanifold of C(M,P)C^{\infty}(M,P) of finite codimension, and that the projection Diff(M)O(f)Diff(M) \to O(f) is a principal locally trivial S(f)S(f)-fibration.Comment: 49 pages, 8 figures. This version includes the proof of the fact that the orbits of a finite codimension of tame action of tame Lie group on tame Frechet manifold is a tame Frechet manifold itsel
    corecore