2,064 research outputs found

    Electron-electron interactions in antidot-based Aharonov-Bohm interferometers

    Full text link
    We present a microscopic picture of quantum transport in quantum antidots in the quantum Hall regime taking electron interactions into account. We discuss the edge state structure, energy level evolution, charge quantization and linear-response conductance as the magnetic field or gate voltage is varied. Particular attention is given to the conductance oscillations due to Aharonov-Bohm interference and their unexpected periodicity. To explain the latter we propose the mechanisms of scattering by point defects and Coulomb blockade tunneling. They are supported by self-consistent calculations in the Hartree approximation, which indicate pinning and correlation of the single-particle states at the Fermi energy as well as charge oscillation when antidot-bound states depopulate. We have also found interesting phenomena of anti-resonance reflection of the Fano type.Comment: 12 pages, 8 figure

    Transport Processes in Metal-Insulator Granular Layers

    Full text link
    Tunnel transport processes are considered in a square lattice of metallic nanogranules embedded into insulating host to model tunnel conduction in real metal/insulator granular layers. Based on a simple model with three possible charging states (±\pm, or 0) of a granule and three kinetic processes (creation or recombination of a ±\pm pair, and charge transfer) between neighbor granules, the mean-field kinetic theory is developed. It describes the interplay between charging energy and temperature and between the applied electric field and the Coulomb fields by the non-compensated charge density. The resulting charge and current distributions are found to be essentially different in the free area (FA), between the metallic contacts, or in the contact areas (CA), beneath those contacts. Thus, the steady state dc transport is only compatible with zero charge density and ohmic resistivity in FA, but charge accumulation and non-ohmic behavior are \emph{necessary} for conduction over CA. The approximate analytic solutions are obtained for characteristic regimes (low or high charge density) of such conduction. The comparison is done with the measurement data on tunnel transport in related experimental systems.Comment: 10 pages, 11 figures, 1 reference corrected, acknowlegments adde

    Transport Properties in Ferromagnetic Josephson Junction between Triplet Superconductors

    Full text link
    Charge and spin Josephson currents in a ballistic superconductor-ferromagnet-superconductor junction with spin-triplet pairing symmetry are studied using the quasiclassical Eilenberger equation. The gap vector of superconductors has an arbitrary relative angle with respect to magnetization of the ferromagnetic layer. We clarify the effects of the thickness of ferromagnetic layer and magnitude of the magnetization on the Josephson charge and spin currents. We find that 0-\pi transition can occur except for the case that the exchange field and d-vector are in nearly perpendicular configuration. We also show how spin current flows due to misorientation between the exchange field and d-vector.Comment: 6 pages, 8 figure

    Conductance of a STM contact on the surface of a thin film

    Get PDF
    The conductance of a contact, having a radius smaller than the Fermi wave length, on the surface of a thin metal film is investigated theoretically. It is shown that quantization of the electron energy spectrum in the film leads to a step-like dependence of differential conductance G(V) as a function of applied bias eV. The distance between neighboring steps in eV equals the energy level spacing due to size quantization. We demonstrate that a study of G(V) for both signs of the voltage maps the spectrum of energy levels above and below Fermi surface in scanning tunneling experiments.Comment: 15 pages, 5 figure

    Proximity DC squids in the long junction limit

    Full text link
    We report the design and measurement of Superconducting/normal/superconducting (SNS) proximity DC squids in the long junction limit, i.e. superconducting loops interrupted by two normal metal wires roughly a micrometer long. Thanks to the clean interface between the metals, at low temperature a large supercurrent flows through the device. The dc squid-like geometry leads to an almost complete periodic modulation of the critical current through the device by a magnetic flux, with a flux periodicity of a flux quantum h/2e through the SNS loop. In addition, we examine the entire field dependence, notably the low and high field dependence of the maximum switching current. In contrast with the well-known Fraunhoffer-type oscillations typical of short wide junctions, we find a monotonous gaussian extinction of the critical current at high field. As shown in [15], this monotonous dependence is typical of long and narrow diffusive junctions. We also find in some cases a puzzling reentrance at low field. In contrast, the temperature dependence of the critical current is well described by the proximity effect theory, as found by Dubos {\it et al.} [16] on SNS wires in the long junction limit. The switching current distributions and hysteretic IV curves also suggest interesting dynamics of long SNS junctions with an important role played by the diffusion time across the junction.Comment: 12 pages, 16 figure

    Point-contact spectroscopy of the antiferromagnetic superconductor HoNi2B2C in the normal and superconducting state

    Full text link
    Point-contact (PC) spectroscopy measurements on antiferromagnetic (AF) (T_N=5.2K) HoNi2B2C single crystals in the normal and two different superconducting (SC) states (T_c=8.5K and Tc=5.6K)arereported.ThePCstudyoftheelectronboson(phonon)interaction(EB(P)I)spectralfunctionrevealspronouncedphononmaximaat16,22and34meV.Forthefirsttimethehighenergymaximaatabout50meVand100meVareresolved.Additionally,anadmixtureofacrystallineelectricfield(CEF)excitationswithamaximumnear10meVandamagneticpeaknear3meVareobserved.Thecontributionofthe10meVpeakinPCEPIconstantλPCisevaluatedas2030contributionofthehighenergymodesat50and100meVamountsabout10eachmaxima,sothesuperconductivitymightbeaffectedbyCEFexcitations.TheSCgapinHoNi2B2CexhibitsastandardsinglebandBCSlikedependence,butvanishesatT_c^*=5.6K) are reported. The PC study of the electron-boson(phonon) interaction (EB(P)I) spectral function reveals pronounced phonon maxima at 16, 22 and 34meV. For the first time the high energy maxima at about 50meV and 100meV are resolved. Additionally, an admixture of a crystalline-electric-field (CEF) excitations with a maximum near 10meV and a `magnetic` peak near 3meV are observed. The contribution of the 10-meV peak in PC EPI constant \lambda_PC is evaluated as 20-30%, while contribution of the high energy modes at 50 and 100meV amounts about 10% for each maxima, so the superconductivity might be affected by CEF excitations. The SC gap in HoNi2B2C exhibits a standard single-band BCS-like dependence, but vanishes at T_c^*=5.6K<T_c, with 2\Delta/kT_c^*=3.9. The strong coupling Eliashberg analysis of the low-temperature SC phase with T_c^*=5.6K =T_N, coexisting with the commensurate AF structure, suggests a sizable value of the EPI constant \lambda_s=0.93. We also provide strong support for the recently proposed by us ''Fermi surface (FS) separation'' scenario for the coexistence of magnetism and superconductivity in magnetic borocarbides, namely, that the superconductivity in the commensurate AF phase survives at a special (nearly isotropic) FS sheet without an admixture of Ho 5d states. Above T_c^* the SC features in the PC characteristics are strongly suppressed pointing to a specific weakened SC state between T_c* and T_c.Comment: 11 pages, 8 figs, to be published in PRB, Vol.75, Iss.2

    Current-flux characteristics in mesoscopic nonsuperconducting rings

    Full text link
    We propose four different mechanisms responsible for paramagnetic or diamagnetic persistent currents in normal metal rings and determine the circumstances for change of the current from paramagnetic to diamagnetic ones and {\it vice versa}. It might qualitatively reproduce the experimental results of Bluhm et al. (Phys. Rev. Lett. 102, 136802 (2009)).Comment: 8 pages, 1 figur

    Electron-phonon interaction in transition metal diborides TB_2 (T=Zr, Nb, Ta) studied by point-contact spectroscopy

    Full text link
    The electron-phonon interaction (EPI) in transition metal diborides TB_2 (T=Zr, Nb, Ta) is investigated by point-contact (PC) spectroscopy. The PC EPI functions were recovered and the EPI parameters lambda<0.1 were estimated for all three compounds. Common and distinctive features between the EPI functions for those diborides are discussed also in connection with the superconductivity in MgB_2.Comment: V2: minor changes, Ref.[21] added, publ. in PR

    Coherent current transport in wide ballistic Josephson junctions

    Get PDF
    We present an experimental and theoretical investigation of coherent current transport in wide ballistic superconductor-two dimensional electron gas-superconductor junctions. It is found experimentally that upon increasing the junction length, the subharmonic gap structure in the current-voltage characteristics is shifted to lower voltages, and the excess current at voltages much larger than the superconducting gap decreases. Applying a theory of coherent multiple Andreev reflection, we show that these observations can be explained in terms of transport through Andreev resonances.Comment: 4 pages, 4 figure

    Comparing external ventricular drains-related ventriculitis surveillance definitions

    Get PDF
    OBJECTIVETo evaluate the agreement between the current National Healthcare Safety Network (NHSN) definition for ventriculitis and others found in the literature among patients with an external ventricular drain (EVD)DESIGNRetrospective cohort study from January 2009 to December 2014SETTINGNeurology and neurosurgery intensive care unit of a large tertiary-care centerPATIENTSPatients with an EVD were included. Patients with an infection prior to EVD placement or a permanent ventricular shunt were excluded.METHODSWe reviewed the charts of patients with positive cerebrospinal fluid (CSF) cultures and/or abnormal CSF results while they had an EVD in place and applied various ventriculitis definitions.RESULTSWe identified 48 patients with a total of 52 cases of ventriculitis (41 CSF culture-positive cases and 11 cases based on abnormal CSF test results) using the NHSN definition. The most common organisms causing ventriculitis were gram-positive commensals (79.2%); however, 45% showed growth of only 1 colony on 1 piece of media. Approximately 60% of the ventriculitis cases by the NHSN definition met the Honda criteria, approximately 56% met the Gozal criteria, and 23% met Citerio’s definition. Cases defined using Honda versus Gozal definitions had a moderate agreement (κ=0.528; P&lt;.05) whereas comparisons of Honda versus Citerio definitions (κ=0.338; P&lt;.05) and Citerio versus Gozal definitions (κ=0.384; P&lt;.05) had only fair agreements.CONCLUSIONSThe agreement between published ventriculostomy-associated infection (VAI) definitions in this cohort was moderate to fair. A VAI surveillance definition that better defines contaminants is needed for more homogenous application of surveillance definitions between institutions and better comparison of rates.Infect Control Hosp Epidemiol 2017;38:574–579</jats:sec
    corecore