1,079 research outputs found

    Quantum Computational Gates with Radiation Free Couplings

    Full text link
    We examine a generic three state mechanism which realizes all fundamental single and double qubit quantum logic gates operating under the effect of adiabatically controllable static (radiation free) bias couplings between the states. At the instant of time that the gate operations are defined the third level is unoccupied which, in a certain sense, derives analogy with the recently suggested dissipation free qubit subspaces. The physical implementation of the mechanism is tentatively suggested in a form of the Aharonov-Bohm persistent current loop in crossed electric and magnetic fields, with the output of the loop read out by a (quantum) Hall effect aided mechanism.Comment: 21 pages including 7 figures, revte

    Reduced leakage current in Josephson tunnel junctions with codeposited barriers

    Full text link
    Josephson junctions were fabricated using two different methods of barrier formation. The trilayers employed were Nb/Al-AlOx/Nb on sapphire, where the first two layers were epitaxial. The oxide barrier was formed either by exposing the Al surface to O2 or by codepositing Al in an O2 background. The codeposition process yielded junctions that showed the theoretically predicted subgap current and no measurable shunt conductance. In contrast, devices with barriers formed by thermal oxidation showed a small shunt conductance in addition to the predicted subgap current.Comment: 3 pages, 4 figure

    The origin of flux-flow resistance oscillations in BiSrCaCuO: Fiske steps in a single junction?

    Get PDF
    We propose an alternative explanation to the oscillations of the flux-flow resistance found in several previously published experiments with BiSrCaCuO stacks. It has been argued by the previous authors that the period of the oscillations corresponding to the field needed to add one vortex per two intrinsic Josephson junctions is associated with a moving triangular lattice of vortices (out-of-phase mode), while the period corresponding to one vortex per one junction is due to the square lattice (in-phase mode). In contrast, we show that both type of oscillations may occur in a single-layer Josephson junction and thus the above interpretation is inconsistent

    A Carbon Nanotube Based Nanorelay

    Full text link
    We investigate the operational characteristics of a nanorelay based on a conducting carbon nanotube placed on a terrace in a silicon substrate. The nanorelay is a three terminal device that acts as a switch in the GHz regime. Potential applications include logic devices, memory elements, pulse generators, and current or voltage amplifiers.Comment: 4 pages, 3 figure

    Classical-to-stochastic Coulomb blockade cross-over in aluminum arsenide wires

    Full text link
    We report low-temperature differential conductance measurements in aluminum arsenide cleaved-edge overgrown quantum wires in the pinch-off regime. At zero source-drain bias we observe Coulomb blockade conductance resonances that become vanishingly small as the temperature is lowered below 250mK250 {\rm mK}. We show that this behavior can be interpreted as a classical-to-stochastic Coulomb blockade cross-over in a series of asymmetric quantum dots, and offer a quantitative analysis of the temperature-dependence of the resonances lineshape. The conductance behavior at large source-drain bias is suggestive of the charge density wave conduction expected for a chain of quantum dots.Comment: version 2: new figure 4, refined discussio

    Doppler Shift in Andreev Reflection from a Moving Superconducting Condensate in Nb/InAs Josephson Junctions

    Get PDF
    We study narrow ballistic Josephson weak links in a InAs quantum wells contacted by Nb electrodes and find a dramatic magnetic-field suppression of the Andreev reflection amplitude, which occurs even for in-plane field orientation with essentially no magnetic flux through the junction. Our observations demonstrate the presence of a Doppler shift in the energy of the Andreev levels, which results from diamagnetic screening currents in the hybrid Nb/InAs-banks. The data for conductance, excess and critical currents can be consistently explained in terms of the sample geometry and the McMillan energy, characterizing the transparency of the Nb/InAs-interface.Comment: 4 pages, 5 figures, title modifie

    MgB2 radio-frequency superconducting quantum interference device prepared by atomic force microscope lithography

    Full text link
    A new method of preparation of radio-frequency superconducting quantum interference devices on MgB2 thin films is presented. The variable-thickness bridge was prepared by a combination of optical lithography and of the scratching by an atomic force microscope. The critical current of the nanobridge was 0.35 uA at 4.2 K. Non-contact measurements of the current-phase characteristics and of the critical current vs. temperature have been investigated on our structures.Comment: RevTeX4. Accepted in Appl. Phys. Let

    Magnetic interference patterns in superconducting junctions: Effects of anharmonic current-phase relations

    Full text link
    A microscopic theory of the magnetic-field modulation of critical currents is developed for plane Josephson junctions with anharmonic current-phase relations. The results obtained allow examining temperature-dependent deviations of the modulation from the conventional interference pattern. For tunneling through localized states in symmetric short junctions with a pronounced anharmonic behavior, the deviations are obtained and shown to depend on distribution of channel transparencies. For constant transparency the deviations vanish not only near Tc, but also at T=0. If Dorokhov bimodal distribution for transparency eigenvalues holds, the averaged deviation increases with decreasing temperature and takes its maximum at T=0.Comment: 6 pages, 6 figure

    Point-contact spectroscopy of the antiferromagnetic superconductor HoNi2B2C in the normal and superconducting state

    Full text link
    Point-contact (PC) spectroscopy measurements on antiferromagnetic (AF) (T_N=5.2K) HoNi2B2C single crystals in the normal and two different superconducting (SC) states (T_c=8.5K and Tc=5.6K)arereported.ThePCstudyoftheelectronboson(phonon)interaction(EB(P)I)spectralfunctionrevealspronouncedphononmaximaat16,22and34meV.Forthefirsttimethehighenergymaximaatabout50meVand100meVareresolved.Additionally,anadmixtureofacrystallineelectricfield(CEF)excitationswithamaximumnear10meVandamagneticpeaknear3meVareobserved.Thecontributionofthe10meVpeakinPCEPIconstantλPCisevaluatedas2030contributionofthehighenergymodesat50and100meVamountsabout10eachmaxima,sothesuperconductivitymightbeaffectedbyCEFexcitations.TheSCgapinHoNi2B2CexhibitsastandardsinglebandBCSlikedependence,butvanishesatT_c^*=5.6K) are reported. The PC study of the electron-boson(phonon) interaction (EB(P)I) spectral function reveals pronounced phonon maxima at 16, 22 and 34meV. For the first time the high energy maxima at about 50meV and 100meV are resolved. Additionally, an admixture of a crystalline-electric-field (CEF) excitations with a maximum near 10meV and a `magnetic` peak near 3meV are observed. The contribution of the 10-meV peak in PC EPI constant \lambda_PC is evaluated as 20-30%, while contribution of the high energy modes at 50 and 100meV amounts about 10% for each maxima, so the superconductivity might be affected by CEF excitations. The SC gap in HoNi2B2C exhibits a standard single-band BCS-like dependence, but vanishes at T_c^*=5.6K<T_c, with 2\Delta/kT_c^*=3.9. The strong coupling Eliashberg analysis of the low-temperature SC phase with T_c^*=5.6K =T_N, coexisting with the commensurate AF structure, suggests a sizable value of the EPI constant \lambda_s=0.93. We also provide strong support for the recently proposed by us ''Fermi surface (FS) separation'' scenario for the coexistence of magnetism and superconductivity in magnetic borocarbides, namely, that the superconductivity in the commensurate AF phase survives at a special (nearly isotropic) FS sheet without an admixture of Ho 5d states. Above T_c^* the SC features in the PC characteristics are strongly suppressed pointing to a specific weakened SC state between T_c* and T_c.Comment: 11 pages, 8 figs, to be published in PRB, Vol.75, Iss.2

    Persistent currents in multicomponent Tomonaga-Luttinger liquid: application to mesoscopic semiconductor ring with spin-orbit interaction

    Full text link
    We study persistent currents in semiconductor ballistic rings with spin-orbit Rashba interaction. We use as a working model the multicomponent Tomonaga-Luttinger liquid which arises due to the nonparabolic dispersion relations of electrons in the rings with rather strong spin-orbit coupling. This approach predicts some new characteristic features of persistent currents, which may be observed in experimental studies of semiconductor ballistic rings.Comment: 13 pages, 8 figure
    corecore