3 research outputs found

    Devising an Engineering Procedure for Calculating the Ductility of a Roller Bearing Under a No-central Radial Load

    Full text link
    Known theoretical approaches to calculating the ductility of rolling bearings include rather complicated analytical dependences and require cumbersome computation. That makes it a relevant task to undertake a research aimed at the development of an engineering approach to the calculation of radial ductility of bearings.The current study proposes an engineering method for determining radial ductility using cylindrical roller bearings as an example. It accounts for the radial gap, contact deformation of parts, the deformations of bending and misalignment of rings for cases when a bearing is exposed to the action of a central radial load and a radial load with eccentricity. The adopted simplified linear calculation model for determining the angle of rings misalignment is valid for small angles when contact is maintained over the entire length of the roller. Computation of radial ductility of roller bearings under a no-central radial load is based on determining the sum of variable elastic deformations in a contact between rings and the most loaded roller. The values for elastic deformations are determined from known formulae for solving the contact problem in elasticity theory taking into consideration a mismatch between the geometric centers of outer and inner rings.Adequacy of the proposed engineering procedure has been confirmed by results from calculating the specific ductility of the cylindrical roller bearing 2211 with a central radial load. By using the proposed methodology, we have derived values for specific ductility that are 3...4 % lower compared to similar results obtained from a known procedure. By using the cylindrical roller bearing 42726 as an example, we have investigated structural parameters considering a no-central radial load. A decrease in the bearing 42726 ductility with an increase in the number of rollers and rigidity of the outer ring has been shown, as well as with a decrease in the eccentricity of a radial load.The ductility of rolling bearings must be known when constructing dynamic models of certain machines: machine tool spindles, shaft-gears at large-size reducers, crane structures. Therefore, the proposed engineering procedure for determining the ductility of roller bearings at small angles of rings misalignment could be applied in the practice of designing machines and mechanisms for which the elastic characteristics of all their components are important

    Multifrequency EPR study of the mobility of nitroxides in solid-state calixarene nanocapsules

    No full text
    Multifrequency continuous wave (cw) and echo-detected (ED) electron paramagnetic resonance (EPR) was employed to study the mobility of nitroxides confined in nanocapsules. The complexes p-hexanoyl calix[4]arene with 4-methoxy-2,2,6,6-tetramethylpiperidine-N-oxyl (MT) and N-(2-methylpropyl)-N-(1-diethylphosphono-2,2-dimethylpropyl)-aminoxyl (DEPN) were studied by X-, W-band and 360 GHz cw EPR at temperatures between 90 and 370 K. Thereby we were able to extract the canonical values of the hyperfine and g-tensors of the encapsulated radicals as well as information on restricted orientational dynamics of the caged spin probes. Comparing cw and ED-EPR data obtained on MT@C6OH we found that between 90 and 200 K the caged nitroxide undergoes isotropic small-angle fluctuations (librations), whereas at higher temperatures restricted rotations of the radical with correlation times of 0.75 x 10(-10) s and 1.2 x 10(-10) s dominate at 325 and 300 K, respectively. The activation energy of the rotational motion of encapsulated MT radicals was evaluated as E(a) = 1.0 kcal mol(-1), which is comparable to the magnitude of van der Waals interactions. Compared to MT, the reorientational motion of DEPN was found to be slower and more isotropic.Peer reviewed: YesNRC publication: Ye
    corecore