49 research outputs found

    MCPIP1 functions as a safeguard of early embryonic development

    Get PDF
    Monocyte chemoattractant protein-induced protein 1 (MCPIP1), also called Regnase-1, is an RNase that has been described as a key negative modulator of inflammation. MCPIP1 also controls numerous tumor-related processes, such as proliferation, apoptosis and differentiation. In this study, we utilized a zebrafish model to investigate the role of Mcpip1 during embryogenic development. Our results demonstrated that during embryogenesis, the expression of the zc3h12a gene encoding Mcpip1 undergoes dynamic changes. Its transcript levels gradually increase from the 2-cell stage to the spherical stage and then decrease rapidly. We further found that ectopic overexpression of wild-type Mcpip1 but not the catalytically inactive mutant form resulted in an embryonic lethal phenotype in zebrafish embryos (24 hpf). At the molecular level, transcriptomic profiling revealed extensive changes in the expression of genes encoding proteins important in the endoplasmic reticulum stress response and in protein folding as well as involved in the formation of primary germ layer, mesendoderm and endoderm development, heart morphogenesis and cell migration. Altogether, our results demonstrate that the expression of zc3h12a must be tightly controlled during the first cell divisions of zebrafish embryos and that a rapid decrease in its mRNA expression is an important factor promoting proper embryo development

    Exome sequencing to explore the possibility of predicting genetic susceptibility to the joint occurrence of polycystic ovary syndrome and Hashimoto鈥檚 thyroiditis

    Get PDF
    A large body of evidence indicates that women with polycystic ovary syndrome (PCOS) have a higher risk of developing Hashimoto鈥檚 thyroiditis (HT) than healthy individuals. Given the strong genetic impact on both diseases, common predisposing genetic factors are possibly involved but are not fully understood. Here, we performed whole-exome sequencing (WES) for 250 women with sporadic PCOS, HT, combined PCOS and HT (PCOS+HT), and healthy controls to explore the genetic background of the joint occurrence of PCOS and HT. Based on relevant comparative analyses, multivariate logistic regression prediction modeling, and the most informative feature selection using the Monte Carlo feature selection and interdependency discovery algorithm, 77 variants were selected for further validation by TaqMan genotyping in a group of 533 patients. In the allele frequency test, variants in RAB6A, GBP3, and FNDC7 genes were found to significantly (padjusted < 0.05) differentiated the PCOS+HT and PCOS groups, variant in HIF3A differentiated the PCOS+HT and HT groups, whereas variants in CDK20 and CCDC71 differentiated the PCOS+HT and both single disorder groups. TaqMan genotyping data were used to create final prediction models, which differentiated between PCOS+HT and PCOS or HT with a prediction accuracy of AUC = 0.78. Using a 70% cutoff of the prediction score improved the model parameters, increasing the AUC value to 0.87. In summary, we demonstrated the polygenic burden of both PCOS and HT, and many common and intersecting signaling pathways and biological processes whose disorders mutually predispose patients to the development of both diseases

    Diarrheal-associated gut dysbiosis in cancer and inflammatory bowel disease patients is exacerbated by Clostridioides difficile infection

    Get PDF
    IntroductionLow diversity gut dysbiosis can take different forms depending on the disease context. In this study, we used shotgun metagenomic sequencing and gas chromatography鈥搈ass spectrometry (GC-MS) to compared the metagenomic and metabolomic profiles of Clostridioides (Clostridium) difficile diarrheal cancer and inflammatory bowel disease (IBD) patients and defined the additive effect of C. difficile infection (CDI) on intestinal dysbiosis.ResultsThe study cohort consisted of 138 case-mix cancer patients, 43 IBD patients, and 45 healthy control individuals. Thirty-three patients were also infected with C. difficile. In the control group, three well-known enterotypes were identified, while the other groups presented with an additional Escherichia-driven enterotype. Bacterial diversity was significantly lower in all groups than in healthy controls, while the highest level of bacterial species richness was observed in cancer patients. Fifty-six bacterial species had abundance levels that differentiated diarrheal patient groups from the control group. Of these species, 52 and 4 (Bacteroides fragilis, Escherichia coli, Klebsiella pneumoniae, and Ruminococcus gnavus) were under-represented and over-represented, respectively, in all diarrheal patient groups. The relative abundances of propionate and butyrate were significantly lower in fecal samples from IBD and CDI patients than in control samples. Isobutyrate, propanate, and butyrate concentrations were lower in cancer, IBD, and CDI samples, respectively. Glycine and valine amino acids were over- represented in diarrheal patients.ConclusionOur data indicate that different external and internal factors drive comparable profiles of low diversity dysbiosis. While diarrheal-related low diversity dysbiosis may be a consequence of systemic cancer therapy, a similar phenotype is observed in cases of moderate to severe IBD, and in both cases, dysbiosis is exacerbated by incidence of CDI

    Characteristics of the gut microbiome in esports players compared with those in physical education students and professional athletes

    Get PDF
    IntroductionEsports is a category of competitive video games that, in many aspects, may be similar to traditional sports; however, the gut microbiota composition of players has not been yet studied.Materials and methodsHere, we investigated the composition and function of the gut microbiota, as well as short chain fatty acids (SCFAs), and amino acids, in a group of 109 well-characterized Polish male esports players. The results were compared with two reference groups: 25 endurance athletes and 36 healthy students of physical education. DNA and metabolites isolated from fecal samples were analyzed using shotgun metagenomic sequencing and mass spectrometry, respectively. Physical activity and nutritional measures were evaluated by questionnaire.ResultsAlthough anthropometric, physical activity and nutritional measures differentiated esports players from students, there were no differences in bacterial diversity, the Bacteroidetes/Firmicutes ratio, the composition of enterotype clusters, metagenome functional content, or SCFA concentrations. However, there were significant differences between esports players and students with respect to nine bacterial species and nine amino acids. By contrast, all of the above-mentioned measures differentiated professional athletes from esports players and students, with 45 bacteria differentiating professional athletes from the former and 31 from the latter. The only species differentiating all three experimental groups was Parabacteroides distasonis, showing the lowest and highest abundance in esports players and athletes, respectively.ConclusionOur study confirms the marked impact of intense exercise training on gut microbial structure and function. Differences in lifestyle and dietary habits between esports players and physical education students appear to not have a major effect on the gut microbiota

    Association of Mitochondrial Variants with the Joint Occurrence of Polycystic Ovary Syndrome and Hashimoto鈥檚 Thyroiditis

    No full text
    Background. The prevalence of Hashimoto鈥檚 thyroiditis (HT) among women with polycystic ovary syndrome (PCOS) is higher than in the general female population, but the factors predisposing to the coexistence of these disorders remain unclear. This study employed whole genome sequencing of mitochondrial DNA to identify genetic variants potentially associated with the development of PCOS and HT and predisposing to their joint occurrence. Results. A total of 84 women participated, including patients with PCOS, HT, coexisting PCOS and HT (PCOS + HT) and healthy women. Both Fisher鈥檚 exact and Mann鈥揥hitney U statistical analyses were performed to compare the frequency of variants between groups. Ten differentiating variants were common to both analyses in PCOS + HT vs. PCOS, one in PCOS + HT vs. HT, and six in PCOS + HT vs. control. Several variants differentiating the PCOS + HT group from PCOS and controls were identified, located both in the mitochondrial genes (including the MT-CYB, MT-ND1, MT-ND2, MT-ND4, MT-ND6, MT-CO1, MT-CO3) and the D-loop region. Only two variants differentiated PCOS + HT and HT groups. One variant (13237a in MT-ND5) was common for all three comparisons and underrepresented in the PCOS + HT group. Functional enrichment analysis showed 10 pathways that were unique for the comparison of PCOS + HT and PCOS groups, especially related to ATP production and oxidative phosphorylation, and one pathway, the NADH-quinone oxidoreductase, chain M/4, that was unique for the comparison of PCOS + HT and control groups. Notably, nine pathways shared commonality between PCOS + HT vs. PCOS and PCOS + HT vs. control, related to the biogenesis and assembly of Complex I. Conclusion. This study provides novel insights into the genetic variants associated with oxidative stress in women with coexisting PCOS and HT. Mitochondrial dysfunction and oxidative stress appear to play a role in the pathogenesis of both conditions. However, more mitochondrial variants were found to differentiate women with both PCOS and HT from those with PCOS alone than from those with HT alone

    Microbiome Sex-Related Diversity in Non-Muscle-Invasive Urothelial Bladder Cancer

    No full text
    Sex-specific discrepancies in bladder cancer (BCa) are reported, and new studies imply that microbiome may partially explain the diversity. We aim to provide characterization of the bladder microbiome in both sexes diagnosed with non-muscle-invasive BCa with specific insight into cancer grade. In our study, 16S rRNA next-generation sequencing was performed on midstream urine, bladder tumor sample, and healthy-appearing bladder mucosa. Bacterial DNA was isolated using QIAamp Viral RNA Mini Kit. Metagenomic analysis was performed using hypervariable fragments of the 16S rRNA gene on Ion Torrent Personal Genome Machine platform. Of 41 sample triplets, 2153 taxa were discovered: 1739 in tumor samples, 1801 in healthy-appearing bladder mucosa and 1370 in midstream urine. Women were found to have smaller taxa richness in Chao1 index than men (p = 0.03). In comparison to low-grade tumors, patients with high-grade lesions had lower bacterial diversity and richness in urine. Significant differences between sexes in relative abundance of communities at family level were only observed in high-grade tumors
    corecore