20 research outputs found

    Mouldy feed, mycotoxins and Shiga toxin - producing Escherichia coli colonization associated with Jejunal Hemorrhage Syndrome in beef cattle

    Get PDF
    Background: Both O157 and non-O157 Shiga toxin - producing Escherichia coli (STECs) cause serious human disease outbreaks through the consumption of contaminated foods. Cattle are considered the main reservoir but it is unclear how STECs affect mature animals. Neonatal calves are the susceptible age class for STEC infections causing severe enteritis. In an earlier study, we determined that mycotoxins and STECs were part of the disease complex for dairy cattle with Jejunal Hemorrhage Syndrome (JHS). For STECs to play a role in the development of JHS, we hypothesized that STEC colonization should also be evident in beef cattle with JHS. Aggressive medical and surgical therapies are effective for JHS, but rely on early recognition of clinical signs for optimal outcomes suggesting that novel approaches must be developed for managing this disease. The main objective of this study was to confirm that mouldy feeds, mycotoxins and STEC colonization were associated with the development of JHS in beef cattle.Results: Beef cattle developed JHS after consuming feed containing several types of mycotoxigenic fungi including Fusarium poae, F. verticillioides, F. sporotrichioides, Penicillium roqueforti and Aspergillus fumigatus. Mixtures of STECs colonized the mucosa in the hemorrhaged tissues of the cattle and no other pathogen was identified. The STECs expressed Stx1 and Stx2, but more significantly, Stxs were also present in the blood collected from the lumen of the hemorrhaged jejunum. Feed extracts containing mycotoxins were toxic to enterocytes and 0.1% of a prebiotic, Celmanax Trademark, removed the cytotoxicity in vitro. The inclusion of a prebiotic in the care program for symptomatic beef calves was associated with 69% recovery.Conclusions: The current study confirmed that STECs and mycotoxins are part of the disease complex for JHS in beef cattle. Mycotoxigenic fungi are only relevant in that they produce the mycotoxins deposited in the feed. A prebiotic, Celmanax Trademark, acted as a mycotoxin binder in vitro and interfered with the progression of disease. \ua9 2011 Baines et al; licensee BioMed Central Ltd.Peer reviewed: YesNRC publication: Ye

    A prebiotic, Celmanax™, decreases Escherichia coli O157:H7 colonization of bovine cells and feed-associated cytotoxicity in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Escherichia coli </it>O157:H7 is the most common serovar of enterohemorrhagic <it>E. coli </it>associated with serious human disease outbreaks. Cattle are the main reservoir with <it>E. coli </it>O157:H7 inducing hemorrhagic enteritis in persistent shedding beef cattle, however little is known about how this pathogen affects cattle health. Jejunal Hemorrhage Syndrome (JHS) has unclear etiology but the pathology is similar to that described for <it>E. coli </it>O157:H7 challenged beef cattle suggestive that <it>E. coli </it>O157:H7 could be involved. There are no effective treatments for JHS however new approaches to managing pathogen issues in livestock using prebiotics and probiotics are gaining support. The first objective of the current study was to characterize pathogen colonization in hemorrhaged jejunum of dairy cattle during natural JHS outbreaks. The second objective was to confirm the association of mycotoxigenic fungi in feeds with the development of JHS and also to identify the presence of potential mycotoxins. The third objective was to determine the impact of a prebiotic, Celmanax™, or probiotic, Dairyman's Choice™ paste, on the cytotoxicity associated with feed extracts <it>in vitro</it>. The fourth objective was to determine the impact of a prebiotic or a probiotic on <it>E. coli </it>O157:H7 colonization of mucosal explants and a bovine colonic cell line <it>in vitro</it>. The final objective was to determine if prebiotic and probiotic feed additives could modify the symptoms that preceded JHS losses and the development of new JHS cases.</p> <p>Findings</p> <p>Dairy cattle developed JHS after consuming feed containing several types of mycotoxigenic fungi including <it>Fusarium culmorum</it>, <it>F. poae</it>, <it>F. verticillioides</it>, <it>F. sporotrichioides</it>, <it>Aspergillus</it><it>flavus</it>, <it>Penicillium roqueforti, P. crustosum, P. paneum </it>and <it>P. citrinum</it>. Mixtures of Shiga toxin - producing <it>Escherichia coli </it>(STEC) colonized the mucosa in the hemorrhaged tissues of the cattle and no other pathogen was identified. The STECs expressed Stx1 and Stx2, but more significantly, Stxs were also present in the blood clot blocking the jejunum. Mycotoxin analysis of the corn crop confirmed the presence of fumonisin, NIV, ZEAR, DON, 15-ADON, 3-ADON, NEO, DAS, HT-2 and T-2. Feed extracts were toxic to enterocytes and 0.1% Celmanax™ removed the cytotoxicity <it>in vitro</it>. There was no effect of Dairyman's Choice™ paste on feed-extract activity <it>in vitro</it>. Fumonisin, T-2, ZEAR and DON were toxic to bovine cells and 0.1% Celmanax™ removed the cytotoxicity <it>in vitro</it>. Celmanax™ also directly decreased <it>E. coli </it>O157:H7 colonization of mucosal explants and a colonic cell line in a dose-dependent manner. There was no effect of Dairyman's Choice™ paste on <it>E. coli </it>O157:H7 colonization <it>in vitro</it>. The inclusion of the prebiotic and probiotic in the feed was associated with a decline in disease.</p> <p>Conclusion</p> <p>The current study confirmed an association between mycotoxigenic fungi in the feed and the development of JHS in cattle. This association was further expanded to include mycotoxins in the feed and mixtures of STECs colonizing the severely hemorrhaged tissues. Future studies should examine the extent of involvement of the different STEC in the infection process. The prebiotic, Celmanax™, acted as an anti-adhesive for STEC colonization and a mycotoxin binder <it>in vitro</it>. Future studies should determine the extent of involvement of the prebiotic in altering disease.</p

    Deoxynivalenol Biosynthesis-Related Gene Expression During Wheat Kernel Colonization by \u3ci\u3eFusarium graminearum\u3c/i\u3e

    Get PDF
    Deoxynivalenol (DON) is a potent mycotoxin and virulence factor produced by Fusarium graminearum. We examined the expression of the core DON biosynthetic gene Tri5 during wheat head infection of susceptible and resistant cultivars and susceptible cultivars treated with strobilurin fungicides (e.g. azoxystrobin). DON was quantified to correlate expression with toxin accumulation. The highest Tri5 expression relative to housekeeping genes occurred at the infection front. As infection progresses, earliest-infected kernels showed diminished relative Tri5 expression but Tri5 expression never ceased during the 21 days observed. Azoxystrobin treatment showed no significant effect on either relative Tri5 expression or DON quantity. The resistant cultivar \u27Alsen\u27 showed minimal spread of the fungus, with no fungus detected by day 21. DON was not detected in significant quantities in Alsen in the later stages sampled. In Wheaten, DON levels were negligible at 8 days post-inoculation (dpi), with detectable DON at later-sampled time points. Tri5 was detected even in fully senesced kernels 21 dpi. Our data demonstrate the presence of Tri5 transcripts in a susceptible cultivar over a much longer time period than has been previously documented. This suggests the ability of the fungus to rapidly resume toxin biosynthesis in dried infected grain should conducive environmental conditions be present, and provides a possible mechanism for high DON levels in asymptomatic grain

    Aflatoxin, Fumonisin and Shiga Toxin-Producing Escherichia coli Infections in Calves and the Effectiveness of Celmanax®/Dairyman’s Choice™ Applications to Eliminate Morbidity and Mortality Losses

    Get PDF
    Mycotoxin mixtures are associated with Shiga toxin-producing Escherichia coli (STEC) infections in mature cattle. STEC are considered commensal bacteria in mature cattle suggesting that mycotoxins provide a mechanism that converts this bacterium to an opportunistic pathogen. In this study, we assessed the mycotoxin content of hemorrhaged mucosa in dairy calves during natural disease outbreaks, compared the virulence genes of the STECs, evaluated the effect of the mucosal mycotoxins on STEC toxin expression and evaluated a Celmanax®/Dairyman’s Choice™ application to alleviate disease. As for human infections, the OI-122 encoded nleB gene was common to STEC genotypes eliciting serious disease. Low levels of aflatoxin (1–3 ppb) and fumonisin (50–350 ppb) were detected in the hemorrhaged mucosa. Growth of the STECs with the mycotoxins altered the secreted protein concentration with a corresponding increase in cytotoxicity. Changes in intracellular calcium indicated that the mycotoxins increased enterotoxin and pore-forming toxin activity. A prebiotic/probiotic application eliminated the morbidity and mortality losses associated with the STEC infections. Our study demonstrates: the same STEC disease complex exists for immature and mature cattle; the significance of the OI-122 pathogenicity island to virulence; the significance of mycotoxins to STEC toxin activity; and, finally, provides further evidence that prebiotic/probiotic applications alleviate STEC shedding and mycotoxin/STEC interactions that lead to disease

    Root cortical anatomy is associated with differential pathogenic and symbiotic fungal colonization in maize

    No full text
    Root anatomical phenotypes vary among maize (Zea mays) cultivars and may have adaptive value by modifying the metabolic cost of soil exploration. However, the microbial trade-offs of these phenotypes are unknown. We hypothesized that nodal roots of maize with contrasting cortical anatomy have different patterns of mutualistic and pathogenic fungal colonization. Arbuscular mycorrhizal colonization in the field and mesocosms, root rots in the field, and Fusarium verticillioides colonization in mesocosms were evaluated in maize genotypes with contrasting root cortical anatomy. Increased aerenchyma and decreased living cortical area were associated with decreased mycorrhizal colonization in mesocosm and field experiments with inbred genotypes. In contrast, mycorrhizal colonization of hybrids increased with larger aerenchyma lacunae; this increase coincided with larger root diameters of hybrid roots. F. verticillioides colonization was inversely correlated with living cortical area in mesocosm-grown inbreds, and no relation was found between root rots and living cortical area or aerenchyma in field-grown hybrids. Root rots were positively correlated with cortical cell file number and inversely correlated with cortical cell size. Mycorrhizae and root rots were inversely correlated in field-grown hybrids. We conclude that root anatomy is associated with differential effects on pathogens and mycorrhizal colonization of nodal roots in maize
    corecore