13 research outputs found

    Zika Virus Non-Structural Protein 1 Antigen-Capture Immunoassay

    No full text
    Infection with Zika virus (ZIKV), a member of the Flavivirus genus of the Flaviviridae family, typically results in mild self-limited illness, but severe neurological disease occurs in a limited subset of patients. In contrast, serious outcomes commonly occur in pregnancy that affect the developing fetus, including microcephaly and other major birth defects. The genetic similarity of ZIKV to other widespread flaviviruses, such as dengue virus (DENV), presents a challenge to the development of specific ZIKV diagnostic assays. Nonstructural protein 1 (NS1) is established for use in immunodiagnostic assays for flaviviruses. To address the cross-reactivity of ZIKV NS1 with proteins from other flaviviruses we used site-directed mutagenesis to modify putative epitopes. Goat polyclonal antibodies to variant ZIKV NS1 were affinity-purified to remove antibodies binding to the closely related NS1 protein of DENV. An antigen-capture ELISA configured with the affinity-purified polyclonal antibody showed a linear dynamic range between approximately 500 and 30 ng/mL, with a limit of detection of between 1.95 and 7.8 ng/mL. NS1 proteins from DENV, yellow fever virus, St. Louis encephalitis virus and West Nile virus showed significantly reduced reactivity in the ZIKV antigen-capture ELISA. Refinement of approaches similar to those employed here could lead to development of ZIKV-specific immunoassays suitable for use in areas where infections with related flaviviruses are common

    CFRs in suspected LF cases presenting to the KGH Lassa Ward by serostatus, 2008–12.

    No full text
    <p>Panel A: CFR by serostatus. The presence of LASV Ag and anti-LASV IgM in serum of patients with verifiable outcomes was assessed by recombinant Ag− and IgM− capture ELISA, respectively. Panel B: Alternative calculation of CFRs. Ag+/IgM± plus Ag−/IgM+ compared to Ag−/IgM−. Statistical significance was determined using a logistic regression model predicting CFR (<a href="http://www.plosntds.org/article/info:doi/10.1371/journal.pntd.0002748#pntd.0002748.s004" target="_blank">Table S3</a>). NS = not significant.</p

    Geographic distribution of patients presenting to the KGH with LASV antigenemia and anti-LASV IgM serpositivity, 2008–12.

    No full text
    <p>Confirmed cases of LF as assessed by LASV Ag in serum or cases anti-LASV IgM are shown by year of presentation, district of residence and frequency of cases. Panel A: Patients presenting in 2008–9. Panel B: Patients presenting in 2010. Panel C: Patients presenting in 2011. Panel D: Patients presenting in 2012.</p

    Suspected cases of LF evaluated at the KGH Lassa Laboratory and numbers of patients admitted to the KGH Lassa Ward, 2008–12.

    No full text
    <p>Non-admitted patients include those where only blood samples were submitted for screening from referral health-posts, patients dying en route to the hospital (DOA = dead on arrival), and patients not meeting the LF suspected case criteria (<a href="http://www.plosntds.org/article/info:doi/10.1371/journal.pntd.0002748#pntd-0002748-t001" target="_blank">Table 1</a>). Characteristics of study patients are compiled in <a href="http://www.plosntds.org/article/info:doi/10.1371/journal.pntd.0002748#pntd.0002748.s002" target="_blank">Table S1</a>.</p

    Monthly distribution of suspected LF cases presenting to the KGH Lassa Ward by serostatus, 2008–2012.

    No full text
    <p>Panel A: antigenemic Lassa fever cases (Ag+/IgM±). Panel B: Patients with serum anti-LASV IgM (Ag−/IgM+). Panel C: Patients with no Lassa virus seropositivity (Ag−/IgM−). The monthly frequency distributions differed between each of the serostatus group comparisons as assessed using a Poisson regression model (p<.001 for all serostatus comparisons; data not shown).</p
    corecore