472 research outputs found

    Phenomenology of lepton-nucleus DIS

    Full text link
    The results of recent phenomenological studies of unpolarized nuclear deep-inelastic scattering are discussed and applied to calculate neutrino charged-current structure functions and cross sections for a number of nuclei.Comment: 6 pages, 5 figures, to appear in Proceedings of 4th International Workshop On Neutrino-Nucleus Interactions In The Few-GeV Region (NuInt05), 26-29 Sep. 2005, Okayama, Japa

    Structure functions for light nuclei

    Full text link
    We discuss the nuclear EMC effect with particular emphasis on recent data for light nuclei including 2H, 3He, 4He, 9Be, 12C and 14N. In order to verify the consistency of available data, we calculate the \chi^2 deviation between different data sets. We find a good agreement between the results from the NMC, SLAC E139, and HERMES experiments. However, our analysis indicates an overall normalization offset of about 2% in the data from the recent JLab E03-103 experiment with respect to previous data for nuclei heavier than 3He. We also discuss the extraction of the neutron/proton structure function ratio F2n/F2p from the nuclear ratios 3He/2H and 2H/1H. Our analysis shows that the E03-103 data on 3He/2H require a renormalization of about 3% in order to be consistent with the F2n/F2p ratio obtained from the NMC experiment. After such a renormalization, the 3He data from the E03-103 data and HERMES experiments are in a good agreement. Finally, we present a detailed comparison between data and model calculations, which include a description of the nuclear binding, Fermi motion and off-shell corrections to the structure functions of bound proton and neutron, as well as the nuclear pion and shadowing corrections. Overall, a good agreement with the available data for all nuclei is obtained.Comment: 18 pages, 7 figures, 5 tables, final version published in Phys. Rev.

    Modeling Lepton-Nucleon Inelastic Scattering from High to Low Momentum Transfer

    Get PDF
    We present a model for inclusive charged lepton-nucleon and (anti)neutrino-nucleon cross sections at momentum transfer squared, Q2Q^2, ∼1GeV2\sim1 {\rm GeV}^2. We quantify the impact of existing low-Q charged-lepton deep-inelastic scattering (DIS) data on effects due to high-twist operators and on the extraction of parton distribution functions (PDFs). No evidence is found for twist-6 contributions to structure functions (SF), and for a twist-4 term in the logitudinal SF at x≳0.1x\gtrsim0.1. We find that DIS data are consistent with the NNLO QCD approximation with the target mass and phenomenological high twist corrections. For Q2<1GeV2Q^2<1 {\rm GeV}^2, we extend extrapolation of the operator product expansion, preserving the low-QQ current-conservation theorems. The procedure yields a good description of data down to Q2∼0.5GeV2Q^2\sim 0.5 {\rm GeV}^2. An updated set of PDFs with reduced uncertainty and applicable down to small momentum transfers in the lepton-nucleon scattering is obtained.Comment: 10 pages, 6 figures, proceedings of the 5th International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region (NuInt07), Batavia, Illinois, 30 May - 3 Jun 200

    Off-shell effects in bound nucleons and parton distributions from 1^1H, 2^2H, 3^3H and 3^3He data

    Get PDF
    We report the results of a new global QCD analysis including deep-inelastic scattering data off 1^1H, 2^2H, 3^3H, and 3^3He targets. Nuclear corrections are treated in terms of a nuclear convolution approach with off-shell bound nucleons. The off-shell (OS) corrections responsible for the modification of the structure functions (SFs) of bound nucleons are constrained in a global fit along with the proton parton distribution functions (PDFs) and the higher-twist (HT) terms. We investigate the proton-neutron difference for the OS correction and discuss our predictions for the SF ratio F2n/F2pF_2^n/F_2^p and the corresponding PDF ratio d/ud/u in the proton, as well as their correlations with the underlying treatment of the HT terms and of the OS corrections. In particular, we find that the recent MARATHON data are consistent with equal relative OS corrections for both the proton and the neutron.Comment: Published version, 6 pages, 4 figure
    • …
    corecore