111 research outputs found

    Photocatalytic decomposition of nitrous oxide using TiO2 and Ag-TiO2 nanocomposite thin films

    Get PDF
    TiO2 and Ag-TiO2 (0.05, 0.25 and 1 wt% of Ag) thin films were prepared by the sol–gel method. The prepared films were characterized using SEM-EDAX, XRD, Raman spectroscopy, atomic force microscopy and UV–Vis spectrometry. Photocatalytic decomposition of N2O was performed in an annular batch reactor illuminated with an 8 W Hg lamp (254 nm wavelength). The photoreactivity of Ag-TiO2 increases with the Ag amount to 0.25 wt% Ag. Further increase of Ag loading to 1 wt% Ag did not change N2O conversion. The Ag particles deposited on the TiO2 surface can act as electron–hole separation centers. The presence of water vapor and oxygen in the reaction mixture slightly improved N2O conversion.Web of Science20917517

    Effect of CaO/ SiO2 ratio on viscosity and structure of slag

    Get PDF
    The objective of this work is experimental determination of temperature dependences of viscosity of the molten CaO - Al2O3 - SiO2 system and assessment of impact of CaO/SiO2 ratio on viscosity and structure of this system. Experimental measurements of viscosity were performed with use of the high-temperature viscometer Anton Paar FRS 1 600. Viscosity was measured in a rotational mode during heating at the rate of 3,3 °C/min in the temperature interval from 1 673 to 1 873 K. Viscosity in the molten oxide system is determined by the internal structure. Exact clarification of the change of structure of the oxide system caused by the increased content of CaO was performed by Fourier transform infrared spectroscopy.Web of Science54345845

    Effect of CaO/ SiO2 ratio on viscosity and structure of slag

    Get PDF
    The objective of this work is experimental determination of temperature dependences of viscosity of the molten CaO – Al2O3 - SiO2 system and assessment of impact of CaO/SiO2 ratio on viscosity and structure of this system. Experimental measurements of viscosity were performed with use of the high-temperature viscometer Anton Paar FRS 1 600. Viscosity was measured in a rotational mode during heating at the rate of 3,3 °C/min in the temperature interval from 1 673 to 1 873 K. Viscosity in the molten oxide system is determined by the internal structure. Exact clarification of the change of structure of the oxide system caused by the increased content of CaO was performed by Fourier transform infrared spectroscopy

    A low-cost photoactive composite quartz sand/TiO2

    Get PDF
    The photoactive quartz sand/TiO2 composites were prepared by thermal hydrolysis of the suspension obtained by addition of quartz sand to a titanyl sulfate solution. The required amount of TiO2 in the prepared composites (i.e. 9, 22 and 45 wt.%, respectively) was achieved using a variable titanyl sulfate/quartz ratio. As reference materials, pure TiO2 was prepared using the thermal hydrolysis of the titanyl sulfate solution under the same condition as used during the preparation of composite quartz/TiO2. The composite samples, dried at 105 °C and calcined at temperatures of 500–900 °C, were investigated using X-ray fluorescence spectroscopy, X-ray powder diffraction analysis, transmission electron microscopy, and Fourier transform infrared spectroscopy. Structural ordering of TiO2 particles on the quartz surface was studied using atomistic simulations in a Material Studio modeling environment. Photodegradation activity of the composites was evaluated by the discoloration of Acid Orange 7 aqueous solution. The composite containing 22 wt.% of TiO2 and calcined at 800 °C exhibits the highest photoactivity. Higher and lower amounts of TiO2 led to worse results. The quartz/TiO2 composite is a promising material able to replace pure TiO2 in a wide range of building materials.Web of Science22249748

    Synthesis and Characterization of Gadolinium Oxide Nanocrystallites

    Get PDF
    Lanthanide oxide nanocrystallites have gained a lot of attention due to their diverse use for potential applications and for this reason it is very important to find a suitable preparation method that would be economically inexpensive and easy to implement. The chapter describes the preparation of gadolinium oxide nanocrystallites (nano Gd2O3) through thermal decomposition of a complex formed by Gd(NO3)3·6 H2O and glycine. Decomposition of the complex occurs at temperatures about (250 ± 10)°C. An ultrafine white powder of the gadolinium oxide nanocrystallites was obtained. The resulting nanocrystallites were characterized by X‐ray powder diffraction analysis, which revealed the size of the gadolinium oxide nanocrystallites equal to 10 nm. The morphology of the gadolinium oxide nanocrystallites was examined by scanning electron microscopy. The elemental composition of the product was confirmed by EDS analysis

    Identification of phase composition of binders from alkali-activated mixtures of granulated blast furnace slag and fly ash

    Get PDF
    The prepared alkali-activated binders (AAB) and composites using suitable latent hydraulic raw materials represent an alternative to materials based on Portland cements. This paper deals with ways how to influence the functional parameters of AAB by setting up mixtures of granulated blast furnace slag (GBFS) and fly ash with selected chemical compositions. In this way the course of hydration process is modified and the phase composition of products of alkali activation is changed as well as their final properties. The amorphous character of the hydration products makes evaluation of the phase composition of hardened AAB difficult and significantly limits the number of experimental techniques suitable to characterise their phase composition. It was observed that measuring the pH of water extracts obtained from the alkali-activated mixtures can give supplementary information about the process of hardening of alkali-activated mixtures of GBFS and fly ash.Web of Science581887

    Solid anorganic particles and chronic rhinosinusitis: A histopathology study

    Get PDF
    Although extensive research has shown the pathological effect of fine and ultrafine airborne particles, clear evidence of association of environmental exposure to them and inflammatory changes in human nasal mucosa is missing. Meanwhile, pathogenesis of chronic rhinosinusitis, despite being a disease with high prevalence in the population, is still unclear. The increasing evidence of the pro-inflammatory properties of these particles raises the question of their possible role in chronic rhinosinusitis. The presented study focused on detection of microsized anorganic particles and clusters of nanosized anorganic particles in the nasal mucosa of patients with chronic rhinosinusitis by Raman microspectroscopy and comparison of their composition to histologic findings. The results were compared to the findings in mucosa obtained from cadavers with no history of chronic rhinosinusitis. Solid particles were found in 90% of tissue samples in the group with chronic rhinosinusitis, showing histologic signs of inflammation in 95%, while in the control group, the particles were found in 20% of samples, with normal histologic findings in all of them. The main detected compounds were graphite, TiO2, amorphous carbon, calcite, ankerite and iron compounds. The results are in accordance with the premise that exogenous airborne particles interact with the nasal mucosa and possibly deposit in it in cases where the epithelial barrier is compromised in chronic rhinosinusitis.Web of Science1912art. no. 726

    Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production

    Get PDF
    PubMed ID: 26828137Markers of oxidative stress and inflammation were analysed in the exhaled breath condensate (EBC) and urine samples of 14 workers (mean age 43  ±  7 years) exposed to iron oxide aerosol for an average of 10  ±  4 years and 14 controls (mean age 39  ±  4 years) by liquid chromatography-electrospray ionization-mass spectrometry/mass spectrometry (LC-ESI-MS/MS) after solid-phase extraction. Aerosol exposure in the workplace was measured by particle size spectrometers, a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS), and by aerosol concentration monitors, P-TRAK and DustTRAK DRX. Total aerosol concentrations in workplace locations varied greatly in both time and space. The median mass concentration was 0.083 mg m−3 (IQR 0.063–0.133 mg m−3) and the median particle concentration was 66 800 particles cm−3 (IQR 16 900–86 900 particles cm−3). In addition, more than 80% of particles were smaller than 100 nm in diameter. Markers of oxidative stress, malondialdehyde (MDA), 4-hydroxy-trans-hexenale (HHE), 4-hydroxy-trans-nonenale (HNE), 8-isoProstaglandin F2α (8-isoprostane) and aldehydes C6–C12, in addition to markers of nucleic acid oxidation, including 8-hydroxy-2-deoxyguanosine (8-OHdG), 8-hydroxyguanosine (8-OHG), 5-hydroxymethyl uracil (5-OHMeU), and of proteins, such as o-tyrosine (o-Tyr), 3-chlorotyrosine (3-ClTyr), and 3-nitrotyrosine (3-NOTyr) were analysed in EBC and urine by LC-ESI-MS/MS. Almost all markers of lipid, nucleic acid and protein oxidation were elevated in the EBC of workers comparing with control subjects. Elevated markers were MDA, HNE, HHE, C6–C10, 8-isoprostane, 8-OHdG, 8-OHG, 5-OHMeU, 3-ClTyr, 3-NOTyr, o-Tyr (all p  <  0.001), and C11 (p  <  0.05). Only aldehyde C12 and the pH of samples did not differ between groups. Markers in urine were not elevated. These findings suggest the adverse effects of nano iron oxide aerosol exposure and support the utility of oxidative stress biomarkers in EBC. The analysis of urine oxidative stress biomarkers does not support the presence of systemic oxidative stress in iron oxide pigment production workers.Web of Science101art. no. 01600
    corecore