5 research outputs found

    Molecular modeling studies on the multistep reactivation process of organophosphate-inhibited acetylcholinesterase and butyrylcholinesterase

    Get PDF
    Poisoning with organophosphorus compounds used as pesticides or misused as chemical weapons remains a serious threat to human health and life. Their toxic effects result from irreversible blockade of the enzymes acetylcholinesterase and butyrylcholinesterase, which causes overstimulation of the cholinergic system and often leads to serious injury or death. Treatment of organophosphorus poisoning involves, among other strategies, the administration of oxime compounds. Oximes reactivate cholinesterases by breaking the covalent bond between the serine residue from the enzyme active site and the phosphorus atom of the organophosphorus compound. Although the general mechanism of reactivation has been known for years, the exact molecular aspects determining the efficiency and selectivity of individual oximes are still not clear. This hinders the development of new active compounds. In our research, using relatively simple and widely available molecular docking methods, we investigated the reactivation of acetyl- and butyrylcholinesterase blocked by sarin and tabun. For the selected oximes, their binding modes at each step of the reactivation process were identified. Amino acids essential for effective reactivation and those responsible for the selectivity of individual oximes against inhibited acetyl- and butyrylcholinesterase were identified. This research broadens the knowledge about cholinesterase reactivation and demonstrates the usefulness of molecular docking in the study of this process. The presented observations and methods can be used in the future to support the search for new effective reactivators

    Investigation of acetylcholinesterase reactivation mechanism by molecular modeling methods

    No full text
    Wst臋p do niniejszej pracy zawiera informacje dotycz膮ce acetylocholinoesterazy, enzymu odpowiedzialnego za hydroliz臋 neuroprzeka藕nika acetylocholiny i prawid艂owe dzia艂anie uk艂adu nerwowego i nerwowo-mi臋艣niowego. Przedstawione zosta艂y funkcje i budowa enzymu, mechanizm katalitycznej hydrolizy. Dalsza cz臋艣膰 wst臋pu zawiera informacje o inhibitorach acetylocholinoesterazy, w szczeg贸lno艣ci o tych nieodwracalnych b臋d膮cych pochodnymi fosforoorganicznymi, stosowanymi jako pestycydy lub sk艂adniki do budowy broni chemicznej. Om贸wiona zosta艂a budowa zwi膮zk贸w fosforoorganicznych, mechanizm ich dzia艂ania toksycznego, problemy zwi膮zane z zatruciami. Scharakteryzowano opisane w literaturze zwi膮zki fosforoorganiczne stosowane jako bro艅 chemiczna. Ponadto opisane zosta艂y sposoby przeciwdzia艂ania zatruciom zwi膮zkami fosforoorganicznymi. Wyja艣niony zosta艂 mechanizm reaktywacji acetylocholinoesterazy zahamowanej przez zwi膮zki fosforoorganiczne przy u偶yciu oksym贸w stosowanych jako swoiste odtrutki. Przedstawiono znane struktury oksym贸w stosowane jako reaktywatory acetylocholinoesterazy, opisano ich og贸ln膮 budow臋, potencja艂 reaktywacyjny oraz wady.W cz臋艣ci eksperymentalnej pracy opisano przebieg procesu hamowania acetylocholinoesterazy przez tabun z zastosowaniem metod modelowania molekularnego. Pokazany zosta艂 spos贸b u艂o偶enia tabunu na moment przed kowalencyjnym zwi膮zaniem z enzymem i opisano dalszy mechanizm hamowania wynikaj膮cy z sposobu u艂o偶enia inhibitora. Sprawdzony zosta艂 tryb kowalencyjnego zwi膮zania stereoizomer贸w tabunu z bia艂kiem, opisano ich oddzia艂ywanie z kieszeni膮 wi膮偶膮c膮. W dalszych etapach zbadano i opisano proces reaktywacji acetylocholinoesterazy zwi膮zanej z tabunem przez znane oksymy: 2-PAM, HI-6, HLo-7, Obidoksym, K074, K203. Prze艣ledzono tak偶e oddzia艂ywanie acetylocholinoesterazy z kompleksem tabun-oksym utworzonym w procesie reaktywacji. Na koniec sprawdzony zosta艂 tryb wi膮zania badanych oksym贸w z sam膮 acetylocholinoesteraz膮 w celu oceny ich wp艂ywu na w艂a艣ciwo艣ci hamuj膮ce enzym. Uzyskane wyniki stanowi膮 pr贸b臋 zrozumienia trudno艣ci zwi膮zanych z reaktywacj膮 acetylocholinoesterazy zahamowanej przez tabun, wyj膮tkowo toksyczny zwi膮zek fosforoorganiczny. Uzyskane wyniki mog膮 stanowi膰 punkt wyj艣cia do projektowania nowych skutecznych reaktywator贸w esteraz cholinowych.Introduction to this thesis describes acetylcholinesterase, enzyme responsible for hydrolysis of acetylcholine neurotransmitter and in consequence proper functioning of nervous and neuromuscular systems. Functions, structure of enzyme, and mechanism of catalytic hydrolysis were presented. Further part of introduction possesses information about acetylcholinesterase inhibitors, in particular this irreversible which are organophosphorus compounds used as pesticides or nerve agents as components of chemical weapon. Structure of organophosphorus compounds, mechanism of their toxic effects, and problems related to poisoning were discussed. Characteristic of known organophosphorus compounds used as nerve agents were described. In addition, methods of preventing organophosphorus compounds poisoning were presented. Reactivation mechanism of organophosphorus-inhibited acetylcholinesterase by oximes were explained. Structure of oximes used as acetylcholinesterase reactivators were drawn, their general structure, reactivation potential and drawbacks were described. Experimental part of thesis describes process of acetylcholinesterase inhibition by tabun using molecular modeling methods. Tabun arrangement in catalytic pocket just before covalent bonding were shown and accordingly further mechanism of irreversible inhibition were described. Covalent binding mode of both stereoisomers of tabun with acetylcholinesterase were checked. In further experimental part tabun-inhibited acetylcholinesterase reactivation process by known oximes: 2-PAM, HI-6, HLo-7. obidoxime, K074, K203 were studied. Interaction of acetylcholinesterase with the tabun-oxime complex formed in reactivation process was also investigated. Binding mode of examined oximes with acetylcholinesterase was checked to assess their inhibitory properties. Obtained results are attempt to understand difficulties of reactivation tabun-inhibited acetylcholinesterase. Results presented in experimental part of this thesis can be starting point for design of novel potent cholinesterase reactivators
    corecore