8 research outputs found

    BrainFrame: A node-level heterogeneous accelerator platform for neuron simulations

    Get PDF
    Objective. The advent of high-performance computing (HPC) in recent years has led to its increasing use in brain studies through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a homogeneous acceleration platform to effectively address the complete array of modeling requirements. Approach. In this paper we propose and build BrainFrame, a heterogeneous acceleration platform that incorporates three distinct acceleration technologies, an Intel Xeon-Phi CPU

    Chronic tendoachilles rupture

    No full text
    We report two cases of chronic tendoachilles (TA) rupture, which was treated with V-Y plasty and turned down flap from the proximal segment to cover the defect. Chronic TA ruptures can be challenging to treat. A number of operations have been described for the repair and augmentation of the chronic TA rupture

    Donor-Reactive Regulatory T Cell Frequency Increases During Acute Cellular Rejection of Lung Allografts.

    No full text
    BackgroundAcute cellular rejection is a major cause of morbidity after lung transplantation. Because regulatory T (Treg) cells limit rejection of solid organs, we hypothesized that donor-reactive Treg increase after transplantation with development of partial tolerance and decrease relative to conventional CD4 (Tconv) and CD8 T cells during acute cellular rejection.MethodsTo test these hypotheses, we prospectively collected 177 peripheral blood mononuclear cell specimens from 39 lung transplant recipients at the time of transplantation and during bronchoscopic assessments for acute cellular rejection. We quantified the proportion of Treg, CD4 Tconv, and CD8 T cells proliferating in response to donor-derived, stimulated B cells. We used generalized estimating equation-adjusted regression to compare donor-reactive T cell frequencies with acute cellular rejection pathology.ResultsAn average of 16.5 ± 9.0% of pretransplantation peripheral blood mononuclear cell Treg cell were donor-reactive, compared with 3.8% ± 2.9% of CD4 Tconv and 3.4 ± 2.6% of CD8 T cells. These values were largely unchanged after transplantation. Donor-reactive CD4 Tconv and CD8 T cell frequencies both increased 1.5-fold (95% confidence interval [95% CI], 1.3-1.6; P < 0.001 and 95% CI, 1.2-1.6; P = 0.007, respectively) during grade A2 rejection compared with no rejection. Surprisingly, donor-reactive Treg frequencies increased by 1.7-fold (95% CI, 1.4-1.8; P < 0.001).ConclusionsContrary to prediction, overall proportions of donor-reactive Treg cells are similar before and after transplantation and increase during grade A2 rejection. This suggests how A2 rejection can be self-limiting. The observed increases over high baseline proportions in donor-reactive Treg were insufficient to prevent acute lung allograft rejection

    Gene signatures common to allograft rejection are associated with lymphocytic bronchitis.

    No full text
    Lymphocytic bronchitis (LB) precedes chronic lung allograft dysfunction. The relationships of LB (classified here as Endobronchial or E-grade rejection) to small airway (A- and B-grade) pathologies are unclear. We hypothesized that gene signatures common to allograft rejection would be present in LB. We studied LB in two partially overlapping lung transplant recipient cohorts: Cohort 1 included large airway brushes (6 LB cases and 18 post-transplant referents). Differential expression using DESeq2 was used for pathway analysis and to define an LB-associated metagene. In Cohort 2, eight biopsies for each pathology subtype were matched with pathology-free biopsies from the same subject (totaling 48 samples from 24 subjects). These biopsies were analyzed by multiplexed digital counting of immune transcripts. Metagene score differences were compared by paired t tests. Compared to referents in Cohort 1, LB demonstrated upregulation of allograft rejection pathways, and upregulated genes in these cases characterized an LB-associated metagene. We observed statistically increased expression in Cohort 2 for this LB-associated metagene and four other established allograft rejection metagenes in rejection vs paired non-rejection biopsies for both E-grade and A-grade subtypes, but not B-grade pathology. Gene expression-based categorization of allograft rejection may prove useful in monitoring lung allograft health
    corecore