17 research outputs found

    Impact of Combined Clenbuterol and Metoprolol Therapy on Reverse Remodelling during Mechanical Unloading

    Get PDF
    Clenbuterol (Cl), a β2 agonist, is associated with enhanced myocardial recovery during left ventricular assist device (LVAD) support, and exerts beneficial remodelling effects during mechanical unloading (MU) in rodent heart failure (HF). However, the specific effects of combined Cl+β1 blockade during MU are unknown.We studied the chronic effects (4 weeks) of β2-adrenoceptor (AR) stimulation via Cl (2 mg/kg/day) alone, and in combination with β1-AR blockade using metoprolol ((Met), 250 mg/kg/day), on whole heart/cell structure, function and excitation-contraction (EC) coupling in failing (induced by left coronary artery (LCA) ligation), and unloaded (induced by heterotopic abdominal heart transplantation (HATx)) failing rat hearts. Combined Cl+Met therapy displayed favourable effects in HF: Met enhanced Cl's improvement in ejection fraction (EF) whilst preventing Cl-induced hypertrophy and tachycardia. During MU combined therapy was less beneficial than either mono-therapy. Met, not Cl, prevented MU-induced myocardial atrophy, with increased atrophy occurring during combined therapy. MU-induced recovery of Ca2+ transient amplitude, speed of Ca2+ release and sarcoplasmic reticulum Ca2+ content was enhanced equally by Cl or Met mono-therapy, but these benefits, together with Cl's enhancement of sarcomeric contraction speed, and MU-induced recovery of Ca2+ spark frequency, disappeared during combined therapy.Combined Cl+Met therapy shows superior functional effects to mono-therapy in rodent HF, but appears inferior to either mono-therapy in enhancing MU-induced recovery of EC coupling. These results suggest that combined β2-AR simulation +β1-AR blockade therapy is likely to be a safe and beneficial therapeutic HF strategy, but is not as effective as mono-therapy in enhancing myocardial recovery during LVAD support

    Cardiomyocyte Ca2+ handling and structure is regulated by degree and duration of mechanical load variation

    Get PDF
    Cardiac transverse (t)-tubules are altered during disease and may be regulated by stretch-sensitive molecules. The relationship between variations in the degree and duration of load and t-tubule structure remains unknown, as well as its implications for local Ca2+-induced Ca2+ release (CICR). Rat hearts were studied after 4 or 8 weeks of moderate mechanical unloading [using heterotopic abdominal heart–lung trans-plantation (HAHLT)] and 6 or 10 weeks of pressure overloading using thoracic aortic constriction. CICR, cell and t-tubule structure were assessed using confocal-microscopy, patch-clamping and scanning ion conductance microscopy. Moderate unloading was compared with severe unloading [using heart-only transplantation (HAHT)]. Mechanical unloading reduced cardiomyocyte volume in a time-dependent manner. Ca2+ release synchronicity was reduced at 8 weeks moderate unloading only. Ca2+ sparks increased in frequency and duration at 8 weeks of moderate unloading, which also induced t-tubule disorganization. Overloading increased cardiomyocyte volume and disrupted t-tubule mor-phology at 10 weeks but not 6 weeks. Moderate mechanical unloading for 4 weeks had milder effects compared with severe mechanical unloading (37 % reduction in cell volume at 4 weeks compared to 56 % reduction after severe mechanical unloading) and did not cause depres-sion and delay of the Ca2+ transient, increased Ca2+ spark frequency or impaired t-tubule and cell surface structure. These data suggest that variations in chronic mechanical load influence local CICR and t-tubule structure in a time- and degree-dependent manner, and that physiologi-cal states of increased and reduced cell size, without pathological changes are possible

    Using empirical science education in schools to improve climate change literacy

    Get PDF
    Providing children with a clear understanding of climate change drivers and their mitigation is crucial for their roles as future earth stewards. To achieve this, it will be necessary to reverse the declining interest in STEM (Science, Technology, Engineering and Mathematics) education in schools in the UK and other countries, as STEM skills will be critical when designing effective mitigation solutions for climate change. The ‘Heat-Cool Initiative’ was co-designed and successfully implemented in five primary/secondary UK schools, as a playful learning tool to unleash student interest in STEM subjects. 103 students from two cohorts (years 5–6 and 7–9) participated in five Heat-Cool activity sessions where they used infrared cameras to explore the issue of urban heat. Their learning was evaluated using a multi-functional quantitative assessment, including pre- and postsession quizzes. Climate change literacy increased by 9.4% in primary school children and by 4.5% in secondary school children. Analyses of >2000 infrared images taken by students, categorised into 13 common themes, revealed age-related differences in children’s cognitive development. At primary school age, images of the ‘self’ dominated; secondary school children engaged more with their physical environment. This novel approach demonstrated the importance of developing tailored technology-enhanced STEM education programmes for different age cohorts, leading to a high capacity for improving learning outcomes regarding climate change. Such programmes, embedded in school curricula nationally and internationally, could become a much-needed positive contribution to reaching the United Nation’s Sustainable Development Goals, especially Goals 4 (Quality Education) and 13 (Climate Action)
    corecore