11 research outputs found

    Energetics of complex phase diagram in a tunable bilayer graphene probed by quantum capacitance

    Full text link
    Bilayer graphene provides a unique platform to explore the rich physics in quantum Hall effect. The unusual combination of spin, valley and orbital degeneracy leads to interesting symmetry broken states with electric and magnetic field. Conventional transport measurements like resistance measurements have been performed to probe the different ordered states in bilayer graphene. However, not much work has been done to directly map the energetics of those states in bilayer graphene. Here, we have carried out the magneto capacitance measurements with electric and magnetic field in a hexagonal boron nitride encapsulated dual gated bilayer graphene device. At zero magnetic field, using the quantum capacitance technique we measure the gap around the charge neutrality point as a function of perpendicular electric field and the obtained value of the gap matches well with the theory. In presence of perpendicular magnetic field, we observe Landau level crossing in our magneto-capacitance measurements with electric field. The gap closing and reopening of the lowest Landau level with electric and magnetic field shows the transition from one ordered state to another one. Further more we observe the collapsing of the Landau levels near the band edge at higher electric field (Dˉ>0.5\bar D > 0.5 V/nm), which was predicted theoretically. The complete energetics of the Landau levels of bilayer graphene with electric and magnetic field in our experiment paves the way to unravel the nature of ground states of the system

    Equilibration of quantum hall edge states and its conductance fluctuations in graphene p-n junctions

    Full text link
    We report an observation of conductance fuctuations (CFs) in the bipolar regime of quantum hall (QH) plateaus in graphene (p-n-p/n-p-n) devices. The CFs in the bipolar regime are shown to decrease with increasing bias and temperature. At high temperature (above 7 K) the CFs vanishes completely and the flat quantized plateaus are recovered in the bipolar regime. The values of QH plateaus are in theoretical agreement based on full equilibration of chiral channels at the p-n junction. The amplitude of CFs for different filling factors follows a trend predicted by the random matrix theory. Although, there are mismatch in the values of CFs between the experiment and theory but at higher filling factors the experimental values become closer to the theoretical prediction. The suppression of CFs and its dependence has been understood in terms of time dependent disorders present at the p-n junctions

    Large Landau level splitting with tunable one-dimensional graphene superlattice probed by magneto capacitance measurements

    Full text link
    The unique zero energy Landau Level of graphene has a particle-hole symmetry in the bulk, which is lifted at the boundary leading to a splitting into two chiral edge modes. It has long been theoretically predicted that the splitting of the zero-energy Landau level inside the {\it bulk} can lead to many interesting physics, such as quantum spin Hall effect, Dirac like singular points of the chiral edge modes, and others. However, so far the obtained splitting with high-magnetic field even on a hBN substrate are not amenable to experimental detection, and functionality. Guided by theoretical calculations, here we produce a large gap zero-energy Landau level splitting (\sim 150 meV) with the usage of a one-dimensional (1D) superlattice potential. We have created tunable 1D superlattice in a hBN encapsulated graphene device using an array of metal gates with a period of \sim 100 nm. The Landau level spectrum is visualized by measuring magneto capacitance spectroscopy. We monitor the splitting of the zeroth Landau level as a function of superlattice potential. The observed splitting energy is an order higher in magnitude compared to the previous studies of splitting due to the symmetry breaking in pristine graphene. The origin of such large Landau level spitting in 1D potential is explained with a degenerate perturbation theory. We find that owing to the periodic potential, the Landau level becomes dispersive, and acquires sharp peaks at the tunable band edges. Our study will pave the way to create the tunable 1D periodic structure for multi-functionalization and device application like graphene electronic circuits from appropriately engineered periodic patterns in near future

    Electron-Hole Asymmetry in the Electron-phonon Coupling in Top-gated Phosphorene Transistor

    Full text link
    Using in-situ Raman scattering from phosphorene channel in an electrochemically top-gated field effect transistor, we show that its phonons with Ag_g symmetry depend much more strongly on concentration of electrons than that of holes, while the phonons with Bg_g symmetry are insensitive to doping. With first-principles theoretical analysis, we show that the observed electon-hole asymmetry arises from the radically different constitution of its conduction and valence bands involving π\pi and σ\sigma bonding states respectively, whose symmetry permits coupling with only the phonons that preserve the lattice symmetry. Thus, Raman spectroscopy is a non-invasive tool for measuring electron concentration in phosphorene-based nanoelectronic devices

    Spontaneous time-reversal symmetry breaking in twisted double bilayer graphene

    Full text link
    Twisted double bilayer graphene (tDBG) comprises two Bernal-stacked bilayer graphene sheets with a twist between them. Gate voltages applied to top and back gates of a tDBG device tune both the flatness and topology of the electronic bands, enabling an unusual level of experimental control. Broken spin/valley symmetry metallic states have been observed in tDBG devices with twist angles \sim 1.2-1.3^\circ, but the topologies and order parameters of these states have remained unclear. We report the observation of an anomalous Hall effect in the correlated metal state of tDBG, with hysteresis loops spanning 100s of mT in out-of-plane magnetic field (BB_{\perp}) that demonstrate spontaneously broken time-reversal symmetry. The BB_{\perp} hysteresis persists for in-plane fields up to several Tesla, suggesting valley (orbital) ferromagnetism. At the same time, the resistivity is strongly affected by even mT-scale values of in-plane magnetic field, pointing to spin-valley coupling or to a direct orbital coupling between in-plane field and the valley degree of freedom

    Tunability of 1/f Noise at Multiple Dirac Cones in hBN Encapsulated Graphene Devices

    No full text
    The emergence of multiple Dirac cones in hexagonal boron nitride (hBN)-graphene heterostructures is particularly attractive because it offers potentially better landscape for higher and versatile transport properties than the primary Dirac cone. However, the transport coefficients of the cloned Dirac cones is yet not fully characterized and many open questions, including the evolution of charge dynamics and impurity scattering responsible for them, have remained unexplored. Noise measurements, having the potential to address these questions, have not been performed to date in dual-gated hBN graphene hBN devices. Here, we present the low frequency 1/f noise measurements at multiple Dirac cones in hBN encapsulated single and bilayer graphene in dual-gated geometry. Our results reveal that the low-frequency noise in graphene can be tuned by more than two-orders of magnitude by changing carrier concentration as well as by modifying the band structure in bilayer graphene. We find that the noise is surprisingly suppressed at the cloned Dirac cone compared to the primary Dirac cone in single layer graphene device, while it is strongly enhanced for the bilayer graphene with band gap opening. The results are explained with the calculation of dielectric function using tight-binding model. Our results also indicate that the 1/f noise indeed follows the Hooge's empirical formula in hBN-protected devices in dual-gated geometry. We also present for the first time the noise data in bipolar regime of a graphene device

    Enhancing photoresponsivity using MoTe2-graphene vertical heterostructures

    No full text
    MoTe2 with a narrow band-gap of similar to 1.1 eV is a promising candidate for optoelectronic applications, especially for the near-infrared photo detection. However, the photo responsivity of few layers MoTe2 is very small (<1mAW(-1)). In this work, we show that a few layer MoTe2-graphene vertical heterostructures have a much larger photo responsivity of similar to 20mAW(-1). The trans-conductance measurements with back gate voltage show on-off ratio of the vertical transistor to be similar to(0.5-1) x 10(5). The rectification nature of the source-drain current with the back gate voltage reveals the presence of a stronger Schottky barrier at the MoTe2-metal contact as compared to the MoTe2-graphene interface. In order to quantify the barrier height, it is essential to measure the work function of a few layers MoTe2, not known so far. We demonstrate a method to determine the work function by measuring the photo-response of the vertical transistor as a function of the Schottky barrier height at the MoTe2-graphene interface tuned by electrolytic top gating. (C) 2016 AIP Publishing LLC

    Tunability of 1/<i>f</i> Noise at Multiple Dirac Cones in hBN Encapsulated Graphene Devices

    No full text
    The emergence of multiple Dirac cones in hexagonal boron nitride (hBN)–graphene heterostructures is particularly attractive because it offers potentially better landscape for higher and versatile transport properties than the primary Dirac cone. However, the transport coefficients of the cloned Dirac cones is yet not fully characterized and many open questions, including the evolution of charge dynamics and impurity scattering responsible for them, have remained unexplored. Noise measurements, having the potential to address these questions, have not been performed to date in dual-gated hBN–graphene–hBN devices. Here, we present the low-frequency 1/<i>f</i> noise measurements at multiple Dirac cones in hBN encapsulated single and bilayer graphene in dual-gated geometry. Our results reveal that the low-frequency noise in graphene can be tuned by more than two-orders of magnitude by changing carrier concentration as well as by modifying the band structure in bilayer graphene. We find that the noise is surprisingly suppressed at the cloned Dirac cone compared to the primary Dirac cone in single layer graphene device, while it is strongly enhanced for the bilayer graphene with band gap opening. The results are explained with the calculation of dielectric function using tight-binding model. Our results also indicate that the 1/<i>f</i> noise indeed follows the Hooge’s empirical formula in hBN-protected devices in dual-gated geometry. We also present for the first time the noise data in bipolar regime of a graphene device
    corecore