6 research outputs found

    A nationwide retrospective observational study of population newborn screening for medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in the Netherlands

    No full text
    To evaluate the Dutch newborn screening (NBS) for medium-chain acyl-CoA dehydrogenase (MCAD) deficiency since 2007, a nationwide retrospective, observational study was performed of clinical, laboratory and epidemiological parameters of patients with MCAD deficiency born between 2007 and 2015. Severe MCAD deficiency was defined by ACADM genotypes associated with clinical ascertainment, or variant ACADM genotypes with a residual MCAD enzyme activity <10%. Mild MCAD deficiency was defined by variant ACADM genotypes with a residual MCAD enzyme activity ≥10%. The prevalence of MCAD deficiency was 1/8300 (95% CI: 1/7300-1/9600). Sensitivity of the Dutch NBS was 99% and specificity ~100%, with a positive predictive value of 86%. Thirteen newborns with MCAD deficiency suffered from neonatal symptoms, three of them died. Of the 189 identified neonates, 24% had mild MCAD deficiency. The acylcarnitine ratio octanoylcarnitine (C8)/decanoylcarnitine (C10) was superior to C8 in discriminating between mild and severe cases and more stable in the first days of life. NBS for MCAD deficiency has a high sensitivity, specificity, and positive predictive value. In the absence of a golden standard to confirm the diagnosis, the combination of acylcarnitine (ratios), molecular and enzymatic studies allows risk stratification. To improve evaluation of NBS protocols and clinical guidelines, additional use of acylcarnitine ratios and multivariate pattern-recognition software may be reappraised in the Dutch situation. Prospective recording of NBS and follow-up data is warranted covering the entire health care chain of preventive and curative medicine

    A nationwide retrospective observational study of population newborn screening for medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in the Netherlands

    Get PDF
    PURPOSE: To evaluate the Dutch newborn screening (NBS) for Medium-Chain Acyl-CoA Dehydrogenase (MCAD) deficiency since 2007. METHODS: A nationwide retrospective, observational study of clinical, laboratory and epidemiological parameters of patients with MCAD deficiency born between 2007-2015. Severe MCAD deficiency was defined by ACADM genotypes associated with clinical ascertainment, or variant ACADM genotypes with a residual MCAD enzyme activity < 10 %. Mild MCAD deficiency was defined by variant ACADM genotypes with a residual MCAD enzyme activity ≥ 10%. RESULTS: The prevalence of MCAD deficiency was 1 / 8,300 (95% CI: 1 / 7,300 - 1 / 9,600). Sensitivity of the Dutch NBS was 99% and specificity ~100%, with a positive predictive value of 86%. Thirteen newborns with MCAD deficiency suffered from neonatal symptoms, three of them died. Of the 189 identified neonates, 24% had mild MCAD deficiency. The acylcarnitine ratio octanoylcarnitine (C8)/decanoylcarnitine (C10) was superior to C8 in discriminating between mild and severe cases and more stable in the first days of life. CONCLUSION: NBS for MCAD deficiency has a high sensitivity, specificity, and positive predictive value. In the absence of a golden standard to confirm the diagnosis, the combination of acylcarnitine (ratios), molecular and enzymatic studies allows risk stratification. To improve evaluation of NBS protocols and clinical guidelines, additional use of acylcarnitine ratios and multivariate pattern-recognition software may be reappraised in the Dutch situation. Prospective recording of NBS and follow-up data is warranted covering the entire health care chain of preventive and curative medicine. TAKE-HOME MESSAGE: The acylcarnitine ratio octanoylcarnitine (C8)/decanoylcarnitine (C10) is stable in the first days of life in subjects with MCAD deficiency and may be reappraised in the Dutch NBS and clinical follow-up. The combination of acylcarnitine (ratios), molecular and enzymatic studies allows risk stratification; in the Netherlands, Approximately 25% of the neonates identified by the Dutch NBS have mild MCAD deficiency. This article is protected by copyright. All rights reserved

    Cell-specific and divergent roles of the CD40L-CD40 axis in atherosclerotic vascular disease

    Get PDF
    Atherosclerosis is a major underlying cause of cardiovascular disease. Previous studies showed that inhibition of the co-stimulatory CD40 ligand (CD40L)-CD40 signaling axis profoundly attenuates atherosclerosis. As CD40L exerts multiple functions depending on the cell-cell interactions involved, we sought to investigate the function of the most relevant CD40L-expressing cell types in atherosclerosis: T cells and platelets. Atherosclerosis-prone mice with a CD40L-deficiency in CD4(+) T cells display impaired Th1 polarization, as reflected by reduced interferon-gamma production, and smaller atherosclerotic plaques containing fewer T-cells, smaller necrotic cores, an increased number of smooth muscle cells and thicker fibrous caps. Mice with a corresponding CD40-deficiency in CD11c(+) dendritic cells phenocopy these findings, suggesting that the T cell-dendritic cell CD40L-CD40 axis is crucial in atherogenesis. Accordingly, sCD40L/sCD40 and interferon-gamma concentrations in carotid plaques and plasma are positively correlated in patients with cerebrovascular disease. Platelet-specific deficiency of CD40L does not affect atherogenesis but ameliorates atherothrombosis. Our results establish divergent and cell-specific roles of CD40L-CD40 in atherosclerosis, which has implications for therapeutic strategies targeting this pathway. Previous studies have shown that the CD40L-CD40 signaling axis plays a role in atherosclerosis. Here the authors investigate the cell-specific functions of the most relevant CD40L-expressing cell types in atherosclerosis. Deficiency of T cell-derived CD40L reduces and stabilizes plaques through impaired Th1 polarization while platelet-derived CD40L ameliorates atherothrombosis
    corecore